구속 효과를 고려한 원형 CFT 기둥의 비선형 해석

Nonlinear Analysis of a Circular CFT Column Considering Confining Effects

  • 한택희 (서울메트로 기술연구소) ;
  • 원덕희 (고려대학교 건축사회환경공학과) ;
  • 이규세 (선문대학교 토목공학과) ;
  • 강영종 (고려대학교 건축사회환경공학과)
  • 발행 : 2009.12.31

초록

콘크리트의 구속효과 및 재료 비선형성, 강재의 변형 경화, 초기작용 축력을 고려하여 원형 콘크리트 충전 강관(Concrete Filled Steel Tube : CFT) 기둥의 해석을 위한 프로그램을 작성하고 검증 및 해석을 수행하였다. 축력-모멘트 상관관계 해석, 모멘트-곡률 해석, 모멘트-횡변위에 대한 해석을 수행하고, 선행연구자의 실험결과와 비교하여 검증하였다. 검증결과, 작성된 프로그램은 실제 CFT 기둥의 거동에 근접하였으며, 콘크리트의 구속효과를 고려한 경우 그렇지 않은 경우보다 더 큰 강도와 연성능력을 나타내었다. 콘크리트의 강도와 강관의 두께 변화에 따른 간단한 매개변수 해석을 수행하였으며, 콘크리트의 강도 증가 시 CFT 기둥의 강도는 증가하나 연성은 저하되는 결과를 보여주었다. 반면에 강관 두께를 증가시키는 경우에는, CFT 기둥의 강도와 연성 모두 증가하는 결과를 보여주었다.

An analysis program to predict the behavior of a concrete filled steel tube column (CFT) was developed. It considered confining effect, material nonlinearity, strain hardening of steel, and initial axial load. With the developed program, axial load-bending moment interaction analyses, moment-lateral displacement relation analyses, and lateral load-lateral displacement relation analyses were performed. For the verification of the developed program, analysis results were compared with the test results from the other researches. The verified results showed that the developed program predicted the behavior of the CFT column with agreeable accuracy. And they showed that it is necessary to consider the confining effect for the reasonable analysis of the CFT column. A simple parametric study was performed and it chose the strength of unconfined concrete and the thickness of a steel tube as the major parameters affecting the behavior of the CFT column. The parametric analysis results showed that the CFT column had higher strength and smaller ductility by increasing the strength of concrete. But the CFT column showed higher strength and larger ductility by increasing the thickness of the steel tube.

키워드

참고문헌

  1. 강현식, 유영찬, 문태섭 (2000) 각형 CFT 단주의 하중-변형도모델, 한국강구조학회 논문집, 제12권 제1호, pp. 9-16
  2. 윤복희, 이은택, 박지영, 장경호 (2004) 구속효과를 고려한 콘크리트 충전 원형 강관의 비틀림 거동, 한국강구조학회 논문집, 제16권 제5호, pp. 529-541
  3. 한국강구조학회 (2003) 콘크리트충전 강관구조 설계 및 시공지침
  4. 한국콘크리트학회 (2004) 콘크리트구조설계기준 해설
  5. 한택희, 염응준, 한상윤, 강영종 (2007) 구속효과를 고려한 내부구속 중공 CFT 부재의 비선형 콘크리트 모델 개발, 한국강구조학회 논문집, 제19권 제1호, pp. 43-52
  6. 황원섭, 김동조 (2002) 콘크리트 구속효과를 고려한 정사각형 CFT단주의 강도, 한국강구조학회 논문집, 제14권 제6호, pp.813-822
  7. American Institute of Steel Construction (1998) Load and Resistance Factored Design : Manual of Steel Construction, Vol. 1
  8. Architectural Institute of Japan (AIJ) (1985) Design Recommendations for Composite Constructions
  9. Canadian Standard Association (CSA) (1994) Limit State Design of Steel Structures (CAN/CSA-S16.1-94), Clause 18, Rexdale, Ontario
  10. Elremaily, A., Aziznamini, A. (2002) Behavior and Strength of Circular Concrete-Filled Tube Columns, Journal of Constructional Steel Research, Vol. 58, pp. 1567-1591 https://doi.org/10.1016/S0143-974X(02)00005-6
  11. Fam, A., Qie, F.S., Rizkalla, S. (2004) Concrete-Filled Steel Tubes Subjected to Axial Compression and Lateral Cyclic Loads, Journal of Structural Engineering, ASCE, pp. 631-640 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)
  12. Fujimoto, T., Mukai, A., Nishiyama, I., Sakino, K. (2004) Behavior of Eccentrically Loaded Concrete-Filled Steel Tubular Columns, Journal of Structural Engineering, ASCE, Vol. 130, No. 2, pp. 203-212 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203)
  13. Hajjar, J.F., Gourley, B.C., Olson, M.C. (1997) A Cyclic Nonlinear Model for Concrete-Filled Tubes. II: Verification, Journal of Structural Engineering, ASCE, Vol. 123, No. 6, pp. 745-754 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(745)
  14. Hu, H.T., Huang, C.S., Chen, Z.L. (2005) Finite Element Analysis of CFT Columns Subjected to an Axial Compressive Force and Bending Moment in Combination, Journal of Constructional Steel Research, Vol. 61, pp. 1692-1712 https://doi.org/10.1016/j.jcsr.2005.05.002
  15. Kato, B. (1996) Column Curves of Steel-Concrete Composite Members, Journal of Constructional Steel Research, Vol. 39, No. 2, pp. 121-135 https://doi.org/10.1016/S0143-974X(96)00030-2
  16. Kilpatrick A.E., Ranagan B.V. (1997) Deformation-control analysis of composite concrete columns, Research Report No. 3/97, School of Civil Engineering, Curtin University of Technology, Perth, Western Australia
  17. Knowles, R., Park, R. (1996) Axial Load Design for Concrete Filled Steel Tubes, Journal of Structural Division, ASCE, ST10, pp. 2125-2153
  18. Mander, J.B., Priestly, M.J.N., Park, R. (1988) Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, ASCE, Vol. 114, No. 8, pp. 1804-1826 https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  19. O'Shea, M.D., Bridge, R.Q. (2000) Design of Circular Thin-Walled Concrete Filled Steel Tubes, Journal of Structural Engineering, ASCE, Vol. 126, No. 11, pp. 1295-1303 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  20. Park R. (1988) Ductility Evaluation from Laboratory and Analytical Testing, Proceeding of Ninth World Conference on Earthquake Engineering, Tokyo, Japan, Vol.8
  21. Popovics, S., (1973) A Numerical Approach to the Complete stressstrain curves of concrete, Cement and Concrete Research, Vol. 3, No. 5, pp. 583-599 https://doi.org/10.1016/0008-8846(73)90096-3
  22. Sugano, S., Nagashima, T. (1992) Seismic Behavior of Concrete Filled Tubular Steel Columns, 10th Structural Congress 92, ASCE, pp. 914-917
  23. Xiao, Y., He, W., Choi K.K. (2005) Confined Concrete-Filled Tubular Columns, Journal of Structural Engineering, ASCE, Vol. 131, No. 3, pp. 488-497 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(488)