논 문

경사냉각판을 이용한 Al-Zn-Mg-(Sc) 반응고 합금 제조의 최적화 및 재가열 특성

김태훈 · 심성용 · 박형원 · 임수근[†]

경상대학교 공학연구원 아이큐브 센터

Optimum Fabrication Conditions and Reheating Characteristic of Semi-Solid Al-Zn-Mg-(Sc) Alloy by Inclined Cooling Plate

Tae-Hun Kim, Sung-Yong Shim, Hyung-Won Park, and Su-Gun ${\sf Lim}^\dagger$

i-Cube Center, Engineering Research Institute, Gyeongsang National University, Jinju, 660-701, Korea

Abstract

Optimum conditions for production of semi-solid Al-Zn-Mg alloy billets was carried out by the Taguchi design method. And, Al-Zn-Mg alloy billets contained Sc (free, 0.1 and 0.3 mass %) were fabricated at optimum conditions. Evolution of microstructure in semi-solid state was investigated through various liquid fractions, holding times and holding temperatures. The Al-Zn-Mg alloy billets reheated at 615°C during 30min are grain growth and it was fractured due to increasing liquid fraction before quenching. And, during reheating up to 600°C, grain growth of Al-Zn-Mg alloy billets contained Sc (0.1 and 0.3 mass %) was not occurred in comparison with those of Al-Zn-Mg alloy without Sc. It was thought that Al₃Sc phases have a pinning effect in grain boundary and Sc content of 0.1 mass% is able to inhibit grain growth effectively through reheating process.

Key words: Al-Mg-Zn alloy, Scandium, Reheating, Thixo-extrusion, Semi-solid.

(Received September 6, 2009; Accepted October 7, 2009)

1.서 론

최근 수송 기계부품 산업의 최대 기술 개발과제는 금속재료 의 경량화와 성능 향상을 통한 효율성 및 내구성의 증대이다. 이에 따라 수송기계분야에서 높은 비강도와 균열 저항성을 가 진 새로운 재료에 대한 요구가 증가하고 있으며 기존의 철강 재료를 사용하던 분야에 고강도 알루미늄 합금을 개발하여 대 체하고자 하는 노력이 활발히 이루어지고 있다. 특히 본 연구 에 사용된 고강도의 Al-Zn-Mg 합금은 높은 기계적 성질로 수 송기기와 항공기의 구조용 재료로 활용범위가 높으며 그에 따 른 수요가 증가 하고 있는 추세이다. 그러나 Al-Zn-Mg계 합 금은 기존 압출 가공의 경우 복잡형상의 부품을 압출함에 있 어서 어려운 점이 있으며, 다이스와 빌렛 간의 마찰에 의한 다이스의 손상으로 인해 제품의 결함, 복잡 형상의 제한성 및 낮은 생산성 등의 문제가 발생하게 된다. 또한 6061 알루미늄 합금을 압출성 100으로 기준 하였을 경우 Al-Zn-Mg 합금의 경우 압출성 지수가 316으로 압출이 용이하지 않다[1-2]. 이러 한 압출의 어려움을 해결하기 위한 방안으로 반용용 압출법이 있다. 이 반용융 압출 과정에서 반응고 빌렛을 고액공존영역까 지 재가열하는 공정을 거치게 되며 재가열시의 빌렛의 고상율

2. 실험 방법

2.1 반응고 빌렛의 제조

본 연구에 사용된 Al-Zn-Mg-(Sc)합금 빌렛은 AA7075 알 루미늄 합금과 Al-2wt.%Sc 모합금을 이용하여 제조하였고 사

과 그에 따른 재가열 온도와 유지시간은 반용용 압출재에서의 미세조직 및 기계적 성질을 좌우하게 된다. 따라서 반용용 압 출을 실시하기 위해서는 이 재가열 거동에 대한 연구가 선행 되어야 한다. 또한 재가열 과정에서 높은 재가열 온도로 인한 결정립 성장의 문제가 발생하게 된다. Al-Zn-Mg 합금에 스칸 듐을 소량 첨가시 강도와 열적 안정성을 향상되는 것으로 알 려져 있다. 이것은 주로 Al₃Sc 석출물이 결정립계 및 아결정 립계에 전위의 이동을 억제하여 결정립 미세화와 강도의 증가 그리고 재결정 억제의 중요한 역할을 하기 때문이다[3-4]. 따라 서 본 연구에서는 재가열시 결정립 성장을 억제하기 위하여 고온에서 안정한 스칸듐을 첨가한 Al-Zn-Mg-(Sc) 합금의 반응 고 빌렛을 제조하여 재가열시 재가열 온도와 시간에 따른 미 세조직 변화를 알아보고, 또한 재가열시 스칸듐 첨가량에 따라 결정립 성장 억제효과의 변화를 알아보고자 한다.

[†]E-mail : suglim@gnu.ac.kr

Alloys	Zn	Mg	Cu	Mn	Si	Sc	Al
Sc Free	6.36	2.51	0.13	0.17	0.02	-	bal.
0.1wt.%Sc	6.20	2.41	0.12	0.17	< 0.01	0.10	bal.
0.3wt.%Sc	5.60	2.26	0.06	0.21	< 0.01	0.28	bal.

Table 1. Chemical composition of Al-Zn-Mg-(Sc) alloys. (wt.%)

Fig. 1. Schematic diagram of semi solid billet.

Table 2. Control factors and their levels

Control Factor	unit	level			
Control Factor	um	1	2	3	
Pouring Temp	°C	640	660	680	
Angle of Cooling Plate	degree	20	30	40	
Length of Cooling Plate	mm	100	200	300	

Table 3. Table of L_93^4 Orthogonal array

Contro factors Order	Pouring temperature	Angle of cooling plate	Length of cooling plate
1	1	1	1
2	1	2	2
3	1	3	3
4	2	1	2
5	2	2	3
6	2	3	1
7	3	1	3
8	3	2	1
9	3	3	2

용된 합금의 화학 조성은 Table 1에 나타내었다. 반응고 빌렛 의 제조는 경사냉각판 방법을 이용하였다. 전기저항로에 750°C 의 온도로 2시간 동안 용해한 후 냉각판에 용탕을 통과시켜 초정을 유리시키고 결정이 유리된 용탕을 630°C로 예열된 금 형에 받은 직후 수냉시켜 반응고 상태로 제조하였다. Fig. 1에 빌렛의 형상과 온도 측정 부위를 나타내었다. 냉각판은 두께 5 mm의 구리판을 이용하여 만들었고 냉각판의 아랫부분에는 냉각수를 흘려주었다.

경사냉각판을 이용한 반응고 빌렛 제조시 최적 제조 조건을 도출하기 위해 다구찌 방법을 이용한 분석을 하였다. 다구찌 기법은 제어할 수 없는 요인을 오차 인자로 두고, 제어 가능

Fig. 2. Schematic diagram for reheating conditions.

한 인자를 조작하여 잡음에 강건한 제조 조건을 수립하는 기 법이다. 또한 이 다구찌 방법은 직교배열표를 사용하여 일부실 시법(Partial factorial experiments)을 수행하여 실험횟수를 줄 이면서도 모든 인자의 영향을 포함하고, 각 인자의 기여율 (Affecting ratio)을 분석이 가능하다[5]. Table 2에 나타난 공 정 변수와 레벨을 제어 가능한 인자로 설정하였으며 그 제어 인자는 용당의 주입온도, 경사냉각판의 각도·길이로 하였다. 설 정된 제어 인자를 Table 3에 L₉(3⁴) 직교배열표를 사용하여 9 가지 조건의 실험을 실시하였다. 그리고 제조된 조건별 시편의 미세조직을 조직에서 초정α의 크기를 측정해 최적 조건을 도 출하기 위해 SN비를 계산하여 최적 제조 조건과 각 인자가 공정에 미치는 영향을 분석하였다.

2.2 재가열 실험

반용융 압출은 고액공존영역까지 재가열하는 공정을 거치게 되며 이때의 재가열시의 미세조직변화는 반용융 압출에서 매우 중요하므로 재가열 온도·시간에 따른 미세조직의 변화를 분석 하였다. 재가열 실험에는 다구찌 기법으로 도출되어진 최적조건 을 이용하여 스칸듐을 Al-Zn-Mg-(Sc)합금에 0wt.%, 0.1wt.% 과 0.3wt.%을 첨가하여 제조된 시편을 사용하였으며, 전기저항 로는 10°C/min의 속도로 가열하였고, 균일한 가열을 위해 400°C에서 10분, 580°C에서 10분 유지하는 다단 가열을 위해 400°C에서 10분, 580°C에서 10분 유지하는 다단 가열을 하였 고 Fig. 2에 모식도를 나타내었다. 재가열 온도 설정은 액상율 을 고려하여 액상율 10%, 25% 온도인 600°C와 615°C로 설 정하고 유지 시간에 따른 초정α의 크기를 조사하였다. 액상율 의 측정은 DSC 분석결과를 부분 적분법을 이용하여 계산하였 다[6-9]. 유지시간은 목표 온도 도달 시간을 0분으로 설정하고 0분, 10분, 30분 동안 유지 한 후 수냉을 하였다.

Fig. 3. Microstructure evolution of Al-Zn-Mg alloys with various processing. a) conventional mold casting, b) semi-solid by cooling plate method.

Fig. 4. Microstructures of semi-solid Al-Zn-Mg alloys using cooling plate with variation of conditions.

2.3 광학 현미경 조직 관찰

제조된 Al-Zn-Mg-(Sc)합금을 연마후 Dix-keller 에칭액에 수초 간 부식시킨 후 광학현미경(NIKON, KPIPHOT)으로 미 세조직을 관찰하였으며, 관찰된 미세조직을 Image analyzer의 Videotest-Structure 프로그램을 이용하여 초정α의 크기를 측정 하였다.

3. 실험 결과 및 고찰

3.1 반응고 Al-Zn-Mg-(Sc) 합금 빌렛의 제조 및 최적 조건 도출

Fig. 3은 일반 금형주조 조직과 경사냉각판을 이용하여 제조

된 반응고 빌렛의 미세조직을 비교한 조직사진이다. 반응고 빌 렛 제조시에는 금형 주조의 로제트 형상과는 다르고 수지상이 적은 구형의 미세한 조직을 볼 수 있었다. 경사냉각판을 이용 한 반응고 빌렛 제조시에는 일반 금형 주조시에 83 μm였던 초정α의 크기가 55 μm로 감소하였다. 이것은 반응고 금속 제 조시 용융 금속이 차가운 경사 냉각판을 흘러내림으로서 초정 이 유리 되고 미세한 조직을 가지게 되기 때문이다[10]. 일반 적인 응고의 경우에는 주벽면이 과냉도가 크기 때문에 주벽상 에서 핵생성이 한 결정은 주벽면에 따라서 어떤 물체로 부터 도 억제되지 않고 성장하여, 이웃 결정과 접해서 응고각을 형 성하고 남은 용탕 속으로 주상으로 성장하며 수축공 등의 주 조결함이 발생되게 된다. 하지만 본 실험에서는 경사냉각판을 이용하여 수지상이 적고 구형의 조직을 가진 빌렛을 제조하였 다. 이것은 내부의 주조 결함은 억제되며 반응고 제품의 품질 은 건전한 상태를 유지하게 된다. 따라서 수지상이 적고 등축 정이 생성된 반응고 빌렛을 이용한 가공의 경우 기계적 성질 향상 및 주조결함을 줄일 수 있을 것으로 생각된다.

본 실험에서는 반응고 빌렛의 제조 조건에 따른 영향를 알아보고 최적 제조 조건을 도출하기 위하여 각각의 조건 별로 제조어진 반응고 빌렛의 초정α의 크기를 다구찌 방법 을 이용하여 분석하였다. 실험 방법에서 설명한 직교 배열표에 의해 9가지 실험조건으로 실험을 실시하였다.

Fig. 4에 각 조건별 미세조직을 나타낸 것으로, 8번, 9번의 조건에서 조대한 초정α를 보이는 조직이 나타났으며 2번, 5번, 6번의 조직이 미세한 경향이 보였다. 8번 9번의 실험조건은 용 당의 주입온도가 680°C구간으로 비교적 용당 주입온도가 높은 조건이다. 이 경우에 있어서는 경사냉각판에 흐르는 융액의 온 도가 액상선이하가 되지 않아 핵생성이 원만하지 않기 때문에 초정α가 조대화 된 것으로 생각되고, 또한 용당 주입온도가 낮은 640°C의 온도 구간은 용당의 주입온도가 낮아 냉각판 위 에서 응고셀이 형성되 용당의 흐름이 악화되어 오히려 미세조 직이 5번, 6번 조직에 비해 건전하지 못했다. 결과적으로 용당 온도 660°C의 조건인 5번, 6번에서 가장 핵생성이 잘되어 초 정요의 크기가 미세하였다고 생각되며 이때 초정α의 크기는 51 μm였다.

측정되어진 초정α의 크기를 이용하여 각 인자에 대한 최적 조건과 인자가 제조 공정에 미치는 영향을 알아보기 위해 SN 비(신호대잡음비)를 식(1)을 이용해 계산 하였다.

$$SN = -10 \times \log_{10} \left(\frac{1}{n} \sum_{i=1}^{n} y_i^2 \right) \quad -----(1)$$

여기서 y_i는 특성값(y)의 i번째 관측 값이고 n은 관측된 횟 수이다. SN비는 다구찌 기법에서 개선을 위한 정도를 나타내 는 측정치이다. 이 실험에서는 초정α의 크기는 미세할수록 기 계적 성질이 향상되기 때문에 다구찌 기법의 특성치 분류에 의해 작을수록 좋은 망소특성(lower-the-better)에 해당한다. 또 한 다구찌 기법에서는 최적조건의 설계에 있어서 높은 SN비를 나타내는 조건을 설정하도록 하고 있다[5].

Fig. 5는 (1)식을 이용하여 각각의 실험 조건에 대한 SN비 를 나타내었다. 5번이 -34.21으로 SN비가 높으며, 7~9번에서는 -36.5 ~ -36.7 범위의 낮은 SN비 형성하고 있다. SN비값은 높 을수록 유리하며, 위의 계산 결과에 따라 최적 제조 조건은 5 번조건인 주입온도 660°C, 경사판 각도 30°, 경사판 길이 300 mm라고 판단된다.

위의 최적 조건으로 스칸듐을 첨가한 반응고 Al-Zn-Mg-(Sc) 합금 빌렛을 제조하였고, 스칸듐의 첨가로 인하여 재가열에 미 치는 영향을 관찰하기 위하여 스칸듐을 첨가하지 않은 빌렛과 0.1wt.%Sc, 0.3wt%Sc을 첨가한 빌렛을 제조하였다. 또한 스칸 듐 첨가에 따른 초정α의 크기변화를 Fig. 6에 나타내었다. 앞 에서 설명한 바와 같이 일반 금형주조에 비하여 반응고 주조 시 초정α의 크기가 미세하였으며 스칸듐을 첨가량이 증가함에 따라 초정α가 미세해지는 경향을 보였다. 일반 금형 주조 시 에는 83 µm의 초정α의 크기를 나타내었고 스칸듐의 첨가가 없는 반응고시에는 55 µm로 초정α의 크기가 감소하였다. 그리 고 스칸듐이 0.1wt.% 첨가 되었을 시에는 51 µm, 0.3wt.%에 서는 45 µm의 미세한 초정α의 크기를 나타내었다. 이것은 스 칸듐의 첨가로 고온에서 결정립 성장 억제 효과 이외에도 미 세한 Al₃Sc석출물들이 핵생성 장소로 작용하여 결정립 미세화 에 영향을 주었기 때문으로 생각된다.

3.2 재가열특성 조사

반용융 압출에서 온도에 따른 고상과 액상의 비율은 매우 중요하다. 일반적으로 온도에 따른 액상율을 측정하는 방법에는 Scheil식을 이용한 계산적인 방법과 DSC분석방법이 있으며 본 실험에서는 DSC 열분석결과를 이용한 부분 적분법을 사용하였 다. DSC분석은 아르곤 분위기에서 승온 속도 10°C/min로 800°C까지 가열하여 이때의 실험결과를 바탕으로 부분적분법을 이용하여 액상율을 계산하여 Fig. 7에 나타내었다. J. Dong 등과 S. Chayong등의 연구에 따르면 반용융 가공시 액상율이 10%~25% 온도가 가장 건전한 조건이라는 연구가 있었다[7-

Fig. 5. SN ratio for each experimental conditions.

Fig. 6. Variation of grain sizes with various processing and Sc contents.

Fig. 7. Liquid fraction obtains as increasing temperature in Al-Zn-Mg alloy.

10]. 따라서 본 실험에서는 DSC를 이용한 액상율 측정에 의해 액상율 10%, 25% 온도인 600°C와 615°C에서 재가열 거동을 조사하였다.

액상율 10%, 25% 온도인 600°C와 615°C까지 다단 가열을 실시하였고 Fig. 1에 시편형상과 온도측정 부위를 나타내었다. 재가열시의 균질한 온도 상승을 확인하기위해 가열로와 시편의 중심부와 가장자리에 K-Type 열전대를 삽입하여 재가열시 실 제 온도 변화를 측정하여 Fig. 8에 나타내었다. 가열로의 온도 와 시편의 실제 온도 차이를 보면 시편의 중심부와 가열로 내 부의 온도는 초기에는 50°C이상의 온도 차이를 보이는 구간이 발생하지만 다단 가열을 통해 최종 목표 온도에서는 온도차가 5°C 이내의 온도 편차를 보여주고 있다. 또한 시편의 중심부와 표면부의 온도 차이는 가열 초기에는 10°C정도의 온도 편차를 보여주지만 목표 온도에서는 5°C이내의 온도 편차를 보였다. 따라서 다단가열을 통해 부위별 온도편차가 거의 없이 균일하 게 가열되고 있음을 보여주고 있다.

Fig. 8. Temperature difference of billet in re-heating process.

Fig. 9은 Sc을 첨가하지 않은 반응고 Al-Zn-Mg 빌렛의 재 가열 온도와 유지시간에 따른 조직 사진이다. 재가열전의 반응 고 빌렛은 초정α의 크기가 55 μm인 미세한 조직이 관찰되었 고 유지시간에 따라 초정 α가 성장하며 구형화 되는 경향을 보 였다. 그리고 유지시간을 30분을 하였을 경우에는 수지상 조직 이 없는 구형의 조직이 되었지만 초정α의 크기는 127 μm로 조대화 하였다. 615°C 재가열시에도 유지시간에 따라 초정α가 성장하며 구형화 되었다. 하지만 600°C에 비해 초정α의 조대 화 경향이 상승하였다. 이 초정α의 성장은 온도의 상승과 고 액공존 영역에서 유지시간이 증가함에 따라 수지상가지의 합체 와 고곡률 반경 영역에서 저곡률 반경 영역으로의 용질 확산 에 의한 고상입자의 구형화가 진행된 것으로 보인다. 또한 30분 유지한 경우 전기저항로에서 퀜칭을 위해 이동 시 형상을 유 지하지 못하고 절반으로 파단 되는 현상을 보였다. 이것은 고 액공존온도에서의 가열과 유지시간에 따른 액상율의 증가 때문 으로 생각된다[7]. 따라서 615℃의 경우 초정α의 조대화와 빌 렛의 형상 유지 문제 등으로 재가열 온도가 높았다고 생각하 며 초정α의 성장과 구형화를 고려할 때 재가열 온도는 600°C

Fig. 9. Microstructures evolution of Al-Zn-Mg billet with holding time at 600 and 615°C.

Fig. 10. Microstructures evolution of Al-Zn-Mg-(Sc) billets with increasing holding time at 600°C as adding Sc.

재가열시 공정에서 스칸듐의 첨가 영향을 알아보기 위하여 재가열 온도를 600°C로 설정하고 유지시간에 따른 변화를 알 아보았다. Fig. 10은 재가열 온도 600°C에서 스칸듐의 첨가량 따른 미세조직 변화를 나타낸 것이다. 스칸듐이 첨가되지 않은 반응고 빌렛은 유지시간에 따라 초정α의 크기가 성장하며 구 형화가 진행되었다. 또한 유지시간 30분의 경우 구형의 조직이 되었지만 결정립이 조대화 되었고 빌렛의 일부가 파단 되는 현상도 보였다. 하지만 스칸듐을 0.1wt.%, 0.3wt.% 첨가된 경 우 Fig. 10에서 볼 수 있듯이 초정α의 변화는 크지 않았으며 성장이 억제된 것으로 보인다. 이는 스칸듐의 첨가로 인한 고 온안정성 효과와 Al₃Sc석출상의 재결정 억제 효과로 보인다 [11-12]. Fig. 11은 재가열 온도 600°C에서 유지시간과 스칸듐 의 첨가량에 따른 초정α의 크기를 화상분석장비를 이용하여 측정한 결과이다. 먼저 스칸듐을 첨가하지 않은 반응고 빌렛의 경우 유지시간이 증가함에 따라 초정α의 크기가 직선적으로 증가하는 것을 알 수 있다. 스칸듐이 첨가 되지 않은 반응고 빌렛은 재가열전에 55 μm의 초정α 크기에서 유지 시간에 따 라 0분에서 88 µm, 10분에서 106 µm 그리고 30분에서는 127 µm의 크기로 직선적으로 조대해졌다. 그러나 스칸듐이 0.1wt.% 첨가 된 반응고 빌렛의 경우 재가열 전의 초정α의 크기는 51 μm에서 0분은 71 μm, 10분은 73 μm이며, 30분의 경우에 73 μm으로 재가열시 초정α의 성장이 크게 둔화된 것 을 알 수 있었다. 또한 스칸듐이 0.3wt.% 첨가시 유지시간 30분의 경우 초정α 크기가 68 μm로서 재가열 전과 비교하여 볼 때 초정α 성장이 크지 않았다. 이것은 스칸듐의 첨가로 인 하여 결정립계에 생성된 Al₃Sc상이 Pinning 효과를 일으켜서 결정립 성장이 억제되었다고 생각된다[13]. 그리고 0.1wt.%Sc 첨가로도 충분히 초정a의 성장을 억제할 수 있었다.

4.결 론

Fig. 11. Primary α size changes as increased holding time at 600°C.

다구쩌법을 이용하여 최적화한 반응고 Al-Zn-Mg-(Sc)합금의 미세조직과 재가열 특성을 조사한 결과 다음과 같은 결론을 얻을 수 있었다.

1) 경사냉각판을 이용한 반응고 빌렛 제조시에는 일반주조의 조대한 로제트형상에 비해 구형이며, 초정a의 크기는 55 μm이 고, 이때의 다구찌 기법에 의해 도출되어진 SN비는 -34.21이 고, 조건은 용탕주입온도 660°C, 경사판 각도 30°, 경사판 길 이 30 cm이었다.

2) 재가열은 600°C에서 10분간 유지하는 것이 바람직하다. 615도에서 30분 유지하여 퀜칭을 위해 이동 시 형상을 유지 하지 못하고 절반으로 파단 되었다. 이것은 공액공존온도에서의 가열과 유지시간에 따른 액상율의 증가 때문이라고 생각되며, 초정α의 성장과 구형화를 고려할 때, 재가열 조건은 600°C에 서 10분이라고 판단된다.

3) 0.1, 0.3wt.%Sc첨가한 반응고 Al-Zn-Mg합금의 600°C에 서 30분 재가열하여도 초정α의 크기는 각각 73 μm, 71 μm로 비슷한 크기였고, 0.1wt%Sc의 첨가로도 충분히 초정α의 성장 을 억제할 수 있었다.

감사의 글

본 연구는 교육과학기술부와 한국산업기술진흥원의 지역혁신 인력양성사업으로 수행된 연구결과임.

참고문헌

- T. Sheppard, F.I.M., C.Eng. and F.I.Mech.E. : Kluwer academic publishers, "Extrusion of Aluminium alloys", (1999) 239
- [2] S. K. Kim, Y. Y. Yoon and H. H. Jo. : J. Mater. Process. Tech., "Novel thixoextrusion process for Al wrought alloys", 187-188 (2007) 354-357
- [3] Kramer, Lawrence S. Tack and William T. : Adv. Mater. and Proc., "Scandium in aluminum alloys", 152(4) (1997) 23
- [4] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M.Furukawa, Z. Horita and T. G. Langdon : Acta Metall. et Mater., "Influence of sacndiem and zirconium on grain stability and superplastic

ductilities in ultrafine-grained Al-Mg alloys", 50 (2002) 553-564

- [5] S. B. Lee : Eretec, "Utilization of Taguchi design method using the Minitab", (2001) 13-61
- [6] J. Dong, Z. Z. Cui, Q. C. Le and G. M. Lu : Mater. Sci. Eng. (A), "Liquidus semi-continuos casting, reheating and thixoforming of a wrought aluminum alloy 7075", 345 (2003) 234-242
- [7] S. Chayong, H. V. Atkinson and P. Kapranos : Mater. Sci. Eng. (A), "Thixoforming 7075 aluminium alloys", 390 (2005) 3-12
- [8] K. R. Cho, J. H. Kim, J. T. Yeom, S. Y. Shim, S. G. Lim and N. K. Park : Transactions of Materials Processing, "Characteristics on the hot extrusion of semi-solid Al-Zn-Mg alloy", 16(5) (2007) 391-395
- [9] E. Tzimas and A. Zavallangos : J. Mater. Sci., "Evaluation of volume fraction of solid in alloys formed by semisolid processing", Vol. 35 (2000) 5319 - 5329
- [10] A. Ohno : Springer-Verlag, "Solidification", (1984) 42
- [11] H. K. Yi, D. W. Suh, S. Y. Lee, K. H. Lee and S. G. Lim : Transactions of Materials Processing, "Microstructural charaterization of hot extruded Al-Zn-Mg-Cu alloys containing Sc", 13(1) (2004) 53-58
- [12] B. K. Min, H. W. Kim and S. B. Kang : J. Kor. Inst. Met. & Mater., "Precipitation Behavior of Sc and Zr in Severe Plastic Deformed Al", 41(11) (2003) 729-736
- [13] S. Y. Shim and S. G. Lim : J. of the Korean Society for Heat Treatment, "Age Hardening and mechanical property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition", 20(5) (2007) 243-249