Optimum Design of Reinforced Concrete Beam Using Genetic Algorithms

유전자 알고리즘을 이용한 철근콘크리트 보의 단면 최적설계

  • Kim, Bong-Ik (Dept. of Ocean Civil Engineering, Gyeongsang Univ) ;
  • Kwon, Jung-Hyun (Dept. of Ocean Civil Engineering, Gyeongsang Univ)
  • 김봉익 (경상대학교 해양토목공학과 해양산업연구소) ;
  • 권중현 (경상대학교 해양토목공학과 해양산업연구소)
  • Published : 2009.12.31

Abstract

We present an optimum design method for a rectangular reinforced concrete beam using Genetic Algorithms. The optimum design procedure in this paper employs 2 design cases: i) all of the design variables (b, d, As) of the rectangular reinforced concrete section are used pseudo-continuously, ii) one is pseudo-continuous for the concrete cross section (b, d) and the other is discrete, using an index for the steel area (As). The optimum design in this paper uses Chakrabarty's model. In this paper, the Genetic Algorithms use the method of Elitism and penalty parameters to improve the fitness in the reproduction process, which leads to very practical designs. The optimum design of the steel area in the examples uses ASTM standard reinforcing bars (#3~#11, #14, #18).

Keywords

References

  1. 김봉익 (1999). "규격부재를 사용한 뼈대구조물의 이산최적화", 대한토목학회논문집, 제19권, 제I-6호, pp 869-878
  2. 김봉익, 권중현 (2003). "유전자 알고리즘을 이용한 트러스의 최적설계", 한국해양공학회지, 제17권, 제6호, pp 53-57
  3. Annual Book for ASTM Standards, Philadelphia. P.A:America Society for Testing and Materials, 1998
  4. Camp, C., Pezeshk, S. and Hansson, H. (2003). "Flexural Design of Reinforced Concrete Frames Using a Genetic Algorithm", Journal of Structural Engineering, Vol 129, No 1, pp 105-115 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(105)
  5. Chakrabarty, B.K. (1992). "A Model for Optimal Design of Reinforced Concrete Beam", Journal of Structural Engineering, ASCE, Vol 118, No 11, pp 3238-3242 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3238)
  6. Coello, C.A., Christiansen, A.D. and Hernandez, F.S. (1997). "A Simple Genetic Algorithm for the Design of Reinforced Concrete Beams", Engineering with Computers, Vol 13, pp 185-196 https://doi.org/10.1007/BF01200046
  7. Everhard, N.J. and Tanner, J.L. (1987). Theory and Problems of Reinforced Concrete Design, McGraw-Hill Book Co, Inc., New York, N.Y
  8. Goldberg, E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA
  9. Hadi, N.S. (2003). "Neural Networks Applications in Concrete Structures", Computer & Structures, Vol 81, pp 373-381 https://doi.org/10.1016/S0045-7949(02)00451-0
  10. Haug, E.J. and Arora, J.S. (1979). Applied Optimal Design, John Wiley, New York
  11. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI
  12. Leps, M. and Sejnoha, M. (2003). "New Approach to Optimization of Reinforced Concrete Beams", Computers & Structures, Vol 81, pp 1957-1966 https://doi.org/10.1016/S0045-7949(03)00215-3
  13. Saouma, V.E. and Murad, R.S. (1984). "Partially Prestressed Concrete Beam Optimization", Journal of Structural Engineering, Vol 110, No 3, pp 589-604 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:3(589)
  14. Sirca, G.F. and Adeli, H. (2004). "Cost Optimization of Prestressed Concrete Bridges", Journal of Structural Engineering, Vol 131, No 3, pp 380-388 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(380)