DOI QR코드

DOI QR Code

Mechanical Energy Analysis for the Lower Limbs during Sit-to-Walk Movement in Elderly Women

여성 고령자들의 Sit-to-Walk동작 시 역학적 에너지 분석

  • Published : 2009.12.30

Abstract

The purpose of this study is to elucidate the possible cause of falling owing to mechanical energy in elderly women as compared to young women when performing the sit-to-walk movement. Two groups participated in this study: 10 elderly women and 10 young women. We used a ProReflex MCU camera (Qualisis, Sweden) and ground reaction force to evaluate the mechanical work. The muscle power (W) showed the same low negative work in both groups in the extension phase of the knee and hip joints while varying the angular velocity and net muscle moment of force. Elderly women, in particular, showed lower negative work. In mechanical work (J), the knee and hip joints of both groups showed the same amount of negative work in the extension phase. In the hip joint, elderly women showed lower negative work results in each phase. These result showed the possible reasons of falling for elderly women according to the weakness of the thigh muscle of the hip joint during the sit-to-walk movement.

본 연구의 목적은 여성고령자들에 있어 젊은 여성과 비교해 Sit-to-Walk동작 시 낙상의 간접적인 요인이 될 수 있는 역학적 에너지를 비교분석 하는 것이다. 여성고령자 그룹 10명과 젊은 여성 그룹 10명이 본 연구를 위해서 참여하였고, 적외선 카메라와 두 대의 지면반력기를 통하여 역학적 에너지를 분석한 결과는 다음과 같다. 근 파워는 각속도와 근 모멘트의 변화에 따라 고관절의 무릎 및 고관절의 신전 국면시 두 그룹 모두 낮은 음의 일률을 보였고, 특히 고령자그룹에 더 낯은 음의 일률을 보였다. 역학적 에너지 일량에 있어서도 무릎관절과 고관절은 무릎 및 고관절 신전 국면에서 두 그룹 모두 음의 일량을 보였고, 특히 고관절은 전체국면에서 고령자 그룹에 있어 더 낮은 음의 일량을 보였다. 이러한 결과는 STW동작 시 고관절 대퇴근의 약화로 인한 에너지 손실(dissipation)은 고령자들의 낙상의 위험요소를 간접적으로 보여주는 것이라 여겨진다.

Keywords

References

  1. 김두환, 박성민, 전도영, 성덕현(2007). 노인과 청장년에 서 앉은 자세에서 일어나기 동작의 생체역학적 분석. 대한재활의학회지, 30(4), 385-391.
  2. 성순창, 강창균, 이만균(2007). 노인여성의 넘어진 경험이 활동체력, 등속성, 각근력 및 평형성에 미치는 영향. 한국체육학회지, 46(3), 503-515.
  3. Cappozzo, A. F., Figura., & Marchetti, M.(1976). The interplay of Muscular and External forces in Human Amblulation. Journal of Biomechanics, 9, 35-43. https://doi.org/10.1016/0021-9290(76)90137-8
  4. Cavagna, G. A., & Kaneko, M.(1977). Mechanical work and efficiency in level walking and running. The Journal of Physiology, 268, 467-481. https://doi.org/10.1113/jphysiol.1977.sp011866
  5. Daley, M. A., & Biewener, A. A.(2003). Muscle force-length dynamics during level versus incline locomotion A comparison of in vivo performance of two guinea fowl ankle extensor. The Journal of Experimental Biology, 206, 2941-2958. https://doi.org/10.1242/jeb.00503
  6. Dehail, P., Bestaven, E., Miller, F., Millet, A., Robert, B., Bourdel-Marchason, I., & Petit, J.(2007). Kinemetic and electromyographic analysis of rising from a chair during a Sit-to-walk task in elderly subjects. Clinical Biomechanics, 22, 1096-1103. https://doi.org/10.1016/j.clinbiomech.2007.07.015
  7. DeVita, P., & Hortobaggi, T.(2000). Age causes a redistribution of joint torques and powers during gait. Journal of Applied Physiology, 88, 1804-1811.
  8. Duncan, J. A., Kowalk, D. L., & Vaughan, C. L.(1997). Six degree of freedom joint power in stair climbing. Gait & Posture, 5, 204-210. https://doi.org/10.1016/S0966-6362(96)01086-7
  9. Elftman, H.(1939). "Force and Energy Changes in the Leg during Walking." The American Journal of Physiology, 125, 339-356.
  10. Elftman, H.(1940). The work done by muscles in running. The American Journal of Physiology, 129, 672-684.
  11. Eng. J. J., & Winter, D. A.(1995). Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dementional Model. Journal of Biomechanics, 28, 753-758. https://doi.org/10.1016/0021-9290(94)00124-M
  12. Gabaldon, A. M., Nelson, F. E., & Roberts, T. J.(2004). Mechanical function of two ankle extensors in wild turkey; Shifts from energy production to energy absorption during incline versus decline running. The Journal of Experimental Biology, 207, 2277-2288. https://doi.org/10.1242/jeb.01006
  13. Hughes, M. A., Weiner, D. K., Schenkman, M. L., Long, R. M., & Studenski, S. A.(1994). Chair rise strategies in the elderly. Clinical Biomechanics, 9, 187-192. https://doi.org/10.1016/0268-0033(94)90020-5
  14. Kerr, A., Durward, B., & Kerr, K. M.(2004). Defining phases for the sit-to-walk movement. Clinical Biomechanics, 19(4), 385-390. https://doi.org/10.1016/j.clinbiomech.2003.12.012
  15. Kerr, A., Durward, B., Kerr, K. M., & Durward, B.(2007). Timing phases of the sit-to-walk movement: Validity of a clinical test. Gait & Posture, 26, 11-16. https://doi.org/10.1016/j.gaitpost.2006.07.004
  16. Khemlani, M. M., Carr, J. H., & Crossbie, W. J.(1999). Muscle synergies and joint linkages in sit-to-stand under two initial foot position. Clinical Biomechanics, 14, 236-246. https://doi.org/10.1016/S0268-0033(98)00072-2
  17. Laursen, B., Ekner, D., Simonsen, E. B., Voigt, M., & Sjogaard, G.(2000). Kinetics and energetics during uphill and down hill carrying of different weights. Applied Ergonomics, 31, 159-166. https://doi.org/10.1016/S0003-6870(99)00036-8
  18. Lay, A. N., Hass, C. J., Nichols, T. R., & Gregor, R. J.(2007). The effects of sloped surfaces on locomotion. Journal of Biomechanics, 40, 1276-1285. https://doi.org/10.1016/j.jbiomech.2006.05.023
  19. Magnan, A., Mcfadyen, B. J., & St-Vincent, G.(1996). Modification of the sit-to-stand task with the addition of gait initiation. Gait & Posture, 4, 232-242. https://doi.org/10.1016/0966-6362(95)01048-3
  20. McFdyen, B. J., Winter, D. A.(1988). An intergrated biomechanical analysis of normal stair ascent and descent. Journal of Biomechanics, 21, 733-744.
  21. Mclntosh, A. S., Beatty, K. T., Dwan, L. N., & Vickers, D. R.(2006). Gait dynamics on an inclined walkway. Journal of Biomechanics, 39, 491-502.
  22. Nepture, R. R., Zajac, F. E., & Kautz, S. A.(2004). Muscle force redistributes segmental power for body progression during walking. Gait & Posture, 19, 194-205. https://doi.org/10.1016/S0966-6362(03)00062-6
  23. Park, E. S., Park, C., Lee, H. J., Kim, D. Y., Lee, D. S., & Cho, S. R.(2003). The characteristics of sit-to-stand transfer in young children with spastic cerebral palsy based on kinematic and kinetic data. Gait & Posture, 71,43-49.
  24. Quanbury, A. O., Winter, D. A., & Reimer, G. D.(1975). "Instantaneous Power and Power flow in Body Segments during Walking. Journal of Human Movement Studies, 1, 59-67.
  25. Saibene, F., & Minetti, A. E.(2003). Biomechanical and physiologyal aspects of legged locomotion in humans. European Journal of Applied Physiology, 88, 297-316. https://doi.org/10.1007/s00421-002-0654-9
  26. Swanson, S. C., & Caldwell, G. E.(2000). An integrated biomechanical analysis high speed incline and level treadmill running. Medicine and Science in Sports, 32, 1146-1155.
  27. Swift, C. G.(2001). Care of order people: Falls in late life and their consequen ces-implementing effective services. British Medical Journal, 322(7290), 855-857. https://doi.org/10.1136/bmj.322.7290.855
  28. Thomas, A. B., Buckley, C., & Hass, C. J.(2008). Dynamic postural Stability During Sit-to-Walk transitions in parkinson Disease patients. Movement Disorders, 23(9), 1274-1280. https://doi.org/10.1002/mds.22079
  29. Wall, J. C., & Crosbie, W. J.(2000). Accuracy and reliability of temporal gait measurement. Gait & Posture, 4, 293-296. https://doi.org/10.1016/0966-6362(95)01052-1
  30. Winter, D. A., & Robertson, D. G.(1978). "Joint Torque and Energy Patterns in Normal Gait" Biological Cybernetics, 29, 137-142. https://doi.org/10.1007/BF00337349
  31. Winter, D. A.(1983). Biomechanical motor patterns in normal waling. Journal of Motor Behavior, 15, 302-330. https://doi.org/10.1080/00222895.1983.10735302
  32. Yamada, T., & Demura, S.(2008). Relationships between ground reaction force parameters during a sit-to-stand movement and physical activity and falling risk of the elderly and a comparison of the movement characteristics between the young and the elderly. Archives of Gerontology and Geriatrics, 10, 10-16.