참고문헌
- Cavalcante, V. A. and J. Dobereiner. 1988. A new acid tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108: 23-31 https://doi.org/10.1007/BF02370096
- Chin-A-Woeng, T. F. C., G. V. Bloomberg, and B. J. J. Lugtenberg. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503-523 https://doi.org/10.1046/j.1469-8137.2003.00686.x
- Ellis, R. J., T. M. Timms-Wilson, and M. J. Bailey. 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol. 2: 247-284 https://doi.org/10.1046/j.1462-2920.2000.00102.x
- Feklistova, I. N. and N. P. Maksimova. 2008. Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology 77: 176-180 https://doi.org/10.1134/S0026261708020094
- Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
- Gordon, S. A. and R. P. Weber. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192-195 https://doi.org/10.1104/pp.26.1.192
- King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44: 301-307
- Kumar, R. S., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkatesvarlu, O. Prsakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154 https://doi.org/10.1111/j.1365-2672.2004.02435.x
- Liu, H., Y. He, H. Jiang, H. Peng, X. Huang, X. Zhang, L. S. Thomashow, and Y. Xu. 2007. Characterization of a phenazine producing strain Pseudomonas chlororaphis GP72 with broad spectrum antifungal activity from green pepper rhizosphere. Curr. Microbiol. 54: 302-306 https://doi.org/10.1007/s00284-006-0444-4
- MacFadden, J. F. 1980. Biochemical Tests for Identification of Medical Bacteria, pp. 51-54. Williams and Wilkins, Baltimore
- Malathi, P., R. Viswanathan, P. Padmanaban, D. Mohanraj, and A. R. Sundar. 2002. Microbial detoxification of Colletotrichum falcatum toxin. Curr. Sci. 83: 745-749
- Mandryk, M. N., E. Kolomiets, and E. S. Dey. 2007. Characterization of antimicrobial compounds produced by Pseudomonas aurantiaca S-1. Pol. J. Microbiol. 56: 245-250
- Mark, G. L., J. P. Morrissey, P. Higgins, and F. O'Gara. 2006. Molecular based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol. Ecol. 56: 167-177 https://doi.org/10.1111/j.1574-6941.2006.00056.x
- McClean, K. H., M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, et al. 1997. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143: 3703-3711 https://doi.org/10.1099/00221287-143-12-3703
- Mehnaz, S., M. S. Mirza, J. Haurat, R. Bally, P. Normand, A. Bano, and K. A. Malik. 2001. Isolation and 16S rRNA sequence analysis of beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 47: 110-117 https://doi.org/10.1139/cjm-47-2-110
- Miller, R. L. and V. J. Higgins. 1970. Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology 60:104-110 https://doi.org/10.1094/Phyto-60-104
- Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270 https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
- Nowak-Thompson, B., P. E. Hammer, D. S. Hill, J. Stafford, N. Torkewitz, T. D. Gaffney, S. T. Lam, I. Molnar, and J. M. Ligon. 2003. 2,5-Dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: Novel head-to-head condensation of two fatty acidderived precursors. J. Bacteriol. 185: 860-869 https://doi.org/10.1128/JB.185.3.860-869.2003
- Omel'yanets, T. G. and G. P. Mel'nik. 1987. Toxicological evaluation of the microbial preparation mycolytin. Zdravookhranenie Turkmenistana 6: 8
- Peix, A., A. Valverde, R. Rivas, J. M. Igual, M. H. Ramirez-Bahena, P. F. Mateos, et al. 2007. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov., and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 57: 1286-1290 https://doi.org/10.1099/ijs.0.64621-0
- Pearson, J. P., K. M. Gray, L. Passador, K. D. Yucker, A. Eberhard, B. H. Iglewski, and E. P. Greenberg. 1994. Structure of the auto-inducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. U.S.A. 91: 197-201 https://doi.org/10.1073/pnas.91.1.197
- Perez-Miranda, S., N. Cabirol, R. George-Tellez, L. S. Zamudio-Rivera, and F. J. Fernandez. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Meth. 70: 127-131 https://doi.org/10.1016/j.mimet.2007.03.023
- Rashid, N., Y. Shimada, S. Ezaki, H. A. Tomi, and T. Y. Imanaka. 2001. Low temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069 https://doi.org/10.1128/AEM.67.9.4064-4069.2001
- Rosado, A. S., F. S. de Azevedo, D. W. da Cruz, J. D. Van Elsa, and L. Seldin. 1998. Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane soil of different grasses. J. Appl. Microbiol. 84: 216-226 https://doi.org/10.1046/j.1365-2672.1998.00332.x
- Rovera, M., J. Andres, E. Carlier, C. Pasluosta, and S. Rosas. 2008. Pseudomonas aurantiaca: Plant growth promoting traits, secondary metabolites and inoculation response, pp. 155-164. In I. Ahmad, J. Pichtel, and S. Hayat (eds.). Plant-Bacteria Interactions. Strategies and Techniques to Promote Plant Growth. Wiley-VCH, Germany
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
- Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anals Biochem. 160: 46-56 https://doi.org/10.1016/0003-2697(87)90612-9
- Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U.S.A. 101: 11030-11035 https://doi.org/10.1073/pnas.0404206101
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 https://doi.org/10.1093/molbev/msm092
- William, G. E. and M. J. C. Asher. 1996. Selection of rhizobacteria for the control of Pythium ultimum and Aphanomyces cochlioides on sugarbeet seedlings. Crop Protec. 15: 479-486 https://doi.org/10.1016/0261-2194(96)00014-2
피인용 문헌
- Genetic and Phenotypic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Sugarcane Plants Growing in Pakistan vol.20, pp.12, 2009, https://doi.org/10.4014/jmb.1005.05014
- Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72 vol.89, pp.1, 2009, https://doi.org/10.1007/s00253-010-2863-1
- Elucidation of Antifungal Metabolites Produced by Pseudomonas aurantiaca IB5-10 with Broad-Spectrum Antifungal Activity vol.22, pp.3, 2009, https://doi.org/10.4014/jmb.1106.06042
- Evaluation ofPseudomonas chlororaphissubsp.aurantiacaSR1 for growth promotion of soybean and for control ofMacrophomina phaseolina vol.24, pp.9, 2014, https://doi.org/10.1080/09583157.2014.910293
- Complete Genome Sequence of the Sugar Cane Endophyte Pseudomonas aurantiaca PB-St2, a Disease-Suppressive Bacterium with Antifungal Activity toward the Plant Pathogen Colletotrichum falcatum vol.2, pp.1, 2009, https://doi.org/10.1128/genomea.01108-13
- Reaction Kinetics for the Biocatalytic Conversion of Phenazine-1-Carboxylic Acid to 2-Hydroxyphenazine vol.9, pp.6, 2009, https://doi.org/10.1371/journal.pone.0098537
- The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0167002
- Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine vol.15, pp.None, 2009, https://doi.org/10.1186/s12934-016-0529-0
- Bioprospecting from cultivable bacterial communities of marine sediment and invertebrates from the underexplored Ubatuba region of Brazil vol.199, pp.1, 2009, https://doi.org/10.1007/s00203-016-1290-9
- Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere vol.8, pp.None, 2009, https://doi.org/10.3389/fmicb.2017.01268
- Secondary Metabolites Production and Plant Growth Promotion by Pseudomonas chlororaphis and P. aurantiaca Strains Isolated from Cactus, Cotton, and Para Grass vol.27, pp.3, 2017, https://doi.org/10.4014/jmb.1601.01021
- Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing Pseudomonas spp. Are Linked to Rhizosphere Colonization in Arabidopsis thaliana and Solanum tuberosum vol.86, pp.4, 2009, https://doi.org/10.1128/aem.02443-19
- Control of pyrimidine nucleotide formation in Pseudomonas aurantiaca vol.202, pp.6, 2009, https://doi.org/10.1007/s00203-020-01842-x
- Whole Genome Analysis of Sugarcane Root-Associated Endophyte Pseudomonas aeruginosa B18-A Plant Growth-Promoting Bacterium With Antagonistic Potential Against Sporisorium scitamineum vol.12, pp.None, 2009, https://doi.org/10.3389/fmicb.2021.628376
- Inhibition of Three Potato Pathogens by Phenazine-Producing Pseudomonas spp. Is Associated with Multiple Biocontrol-Related Traits vol.6, pp.3, 2009, https://doi.org/10.1128/msphere.00427-21
- Ecology of microorganisms from springs of national park "Alkhanai" (Transbaikalia, Russia) vol.848, pp.1, 2009, https://doi.org/10.1088/1755-1315/848/1/012115