DOI QR코드

DOI QR Code

Cloning and Expression of $\beta$-Glucuronidase from Lactobacillus brevis in E. coli and Application in Bioconversion of Baicalin and Wogonoside

  • Kim, Hyun-Sung (Interdisciplinary Program in Genetic Engineering, Seoul National University) ;
  • Kim, Jin-Yong (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Myeong-Soo (Department of Culinary Arts, Anyang Technical College) ;
  • Zheng, Hua (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Ji, Geun-Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Published : 2009.12.31

Abstract

The $\beta$-glucuronidase (GUS) gene from Lactobacillus brevis RO1 was cloned and expressed in Escherichia coli GMS407. The GUS gene was composed of 1,812 bp, encoding a 603-amino-acid protein belonging to glycosyl hydrolase family 2 with three conserved domains. The amino acid similarity was higher than 70% with the $\beta$-glucuronidases of various microorganisms, yet less than 58% with the $\beta$-glucuronidase of L. gasseri ADH. Overexpression and purification of the GUS was performed in $\beta$-glucuronidase-deficient E. coli GMS407. The purified GUS protein was 71 kDa and showed 1,284 U/mg of specific activity at optimum conditions of pH 5.0 and $37^{\circ}C$. At $37^{\circ}C$, the GUS remained stable for 80 min at pH values ranging from 5.0 to 8.0. The purified enzyme exhibited a half-life of 1 h at $60^{\circ}C$ and more than 2 h at $50^{\circ}C$. When the purified GUS was applied to transform baicalin and wogonoside into their corresponding aglycones, $150\;{\mu}M$ of baicalin and $125\;{\mu}M$ of wogonoside were completely transformed into baicalein and wogonin, respectively, within 3 h.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410
  2. Beaud, D., P. Tailliez, and J. Anba-Mondoloni. 2005. Genetic characterization of the $\beta$-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 151: 2323-2330 https://doi.org/10.1099/mic.0.27712-0
  3. Challacombe, J. F., A. J. Duncan, T. S. Brettin, D. Bruce, O. Chertkov, J. C. Detter, et al. 2007. Complete genome sequence of Haemophilus somnus (Histophilus somni) strain 129Pt and comparison to Haemophilus ducreyi 35000HP and Haemophilus influenzae Rd. J. Bacteriol. 189: 1890-1898 https://doi.org/10.1128/JB.01422-06
  4. Dordet-Frisoni, E., R. Talon, and S. Leroy. 2007. Physical and genetic map of the Staphylococcus xylosus C2a chromosome. FEMS Microbiol. Lett. 266: 184-193 https://doi.org/10.1111/j.1574-6968.2006.00538.x
  5. Geueke, B., B. Riebel, and W. Hummel. 2003. NADH oxidase from Lactobacillus brevis: A new catalyst for the regeneration of NAD. Enz. Microb. Technol. 32: 205-211 https://doi.org/10.1016/S0141-0229(02)00290-9
  6. Han, J. S., J. Y. Park, and D. S. Hwang. 2001. Proteolysis of the reverse transcriptase of hepatitis B virus by Lon protease in E. coli. Korean J. Biol. Sci. 5: 195-198 https://doi.org/10.1080/12265071.2001.9647602
  7. Higgins, D. G., A. J. Bleasby, and R. Fuchs. 1992. CLUSTAL V: Improved software for multiple sequence alignment. Comput. Appl. Biosci. 8: 189-191 https://doi.org/10.1093/bioinformatics/8.2.189
  8. Ishimaru, K., K. Nishikawa, T. Omoto, I. Asai, K. Yoshihira, and K. Shimomura. 1995. Two flavone 2'-glucosides from Scutellaria baicalensis. Phytochemistry 40: 279-281 https://doi.org/10.1016/0031-9422(95)00200-Q
  9. Islam, M. R., A. Waheed, G. N. Shah, S. Tomatsu, and W. S. Sly. 1999. Human egasyn binds $\beta$-glucuronidase but neither the esterase active site of egasyn nor the C terminus of $\beta$-glucuronidase is involved in their interaction. Arch. Biochem. Biophys. 372: 53-61 https://doi.org/10.1006/abbi.1999.1449
  10. Jiang, Z. Y., Y. F. Zhang, J. Li, W. Jiang, D. Yang, and H. Wu. 2007. Encapsulation of $\beta$-glucuronidase in biomimetic alginate capsules for bioconversion of baicalin to baicalein. Ind. Eng. Chem. Res. 46: 1883-1890 https://doi.org/10.1021/ie0613218
  11. Krahulec, J. and J. Krahulcova. 2007. Characterization of the new $\beta$-glucuronidase from Streptococcus equi subsp. zooepidemicus. Appl. Microbiol. Biotechnol. 74: 1016-1022 https://doi.org/10.1007/s00253-006-0745-3
  12. Lai, M. Y., S. L. Hsiu, C. C. Chen, Y. C. Hou, and P. D. Chao. 2003. Urinary pharmacokinetics of baicalein, wogonin and their glycosides after oral administration of Scutellariae Radix in humans. Biol. Pharm. Bull. 26: 79-83 https://doi.org/10.1248/bpb.26.79
  13. Makarova, K., A. Slesarev, Y. Wolf, A. Sorokin, B. Mirkin, E. Koonin, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U.S.A. 103: 15611-15616 https://doi.org/10.1073/pnas.0607117103
  14. Marchler-Bauer, A., J. B. Anderson, M. K. Derbyshire, C. DeWeese-Scott, N. R. Gonzales, M. Gwadz, et al. 2007. CDD: A conserved domain database for interactive domain family analysis. Nucleic Acids Res. 35: D237-D240 https://doi.org/10.1093/nar/gkl951
  15. Nishioka, Y., S. Kyotani, M. Miyamura, and M. Kusunose. 1992. Influence of time of administration of a Shosaiko-to extract granule on blood concentration of its active constituents. Chem. Pharm. Bull. (Tokyo) 40: 1335-1337 https://doi.org/10.1248/cpb.40.1335
  16. Russell, W. M. and T. R. Klaenhammer. 2001. Identification and cloning of gusA, encoding a new $\beta$-glucuronidase from Lactobacillus gasseri ADH. Appl. Environ. Microbiol. 67: 1253-1261 https://doi.org/10.1128/AEM.67.3.1253-1261.2001
  17. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  18. Shimizu, T., K. Ohtani, H. Hirakawa, K. Ohshima, A. Yamashita, T. Shiba, et al. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. U.S.A. 99: 996-1001 https://doi.org/10.1073/pnas.022493799
  19. Takeuchi, F., S. Watanabe, T. Baba, H. Yuzawa, T. Ito, Y. Morimoto, et al. 2005. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187: 7292-7308 https://doi.org/10.1128/JB.187.21.7292-7308.2005
  20. Zhang, C. Z., Y. F. Zhang, J. P. Chen, and X. M. Liang. 2005. Purification and characterization of baicalin-$\beta$-D-glucuronidase hydrolyzing baicalin to baicalein from fresh roots of Scultellaria viscidula Bge. Process Biochem. 40: 1911-1915 https://doi.org/10.1016/j.procbio.2004.07.003

Cited by

  1. 황련해독탕 및 발효황련해독탕의 항염증 효과 vol.24, pp.2, 2011, https://doi.org/10.6114/jkood.2011.24.2.001
  2. Bioconversion of Flavones During Fermentation in Milk Containing Scutellaria baicalensis Extract by Lactobacillus brevis vol.23, pp.10, 2009, https://doi.org/10.4014/jmb.1305.05001
  3. β-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30 vol.98, pp.9, 2009, https://doi.org/10.1007/s00253-013-5325-8
  4. 젖산균 발효를 통한 녹차 추출물의 Epigallocatechin 함량의 증대 vol.44, pp.1, 2009, https://doi.org/10.4014/mbl.1511.11015
  5. Temporal control of Dickeya dadantii main virulence gene expression by growth phase-dependent alteration of regulatory nucleoprotein complexes vol.1859, pp.11, 2009, https://doi.org/10.1016/j.bbagrm.2016.08.001
  6. Leuconostoc mesenteroides를 이용한 브로콜리 발효물에 의한 Clostridium difficile의 생육 제어 vol.32, pp.6, 2017, https://doi.org/10.13103/jfhs.2017.32.6.531
  7. Application of β-glucuronidase-immobilised silica gel formulation to microfluidic platform for biotransformation of β-glucuronides vol.40, pp.5, 2009, https://doi.org/10.1007/s10529-018-2530-7
  8. Comparative pharmacokinetics of four active components on normal and diabetic rats after oral administration of Gandi capsules vol.8, pp.12, 2009, https://doi.org/10.1039/c7ra11420f
  9. Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10 vol.102, pp.21, 2018, https://doi.org/10.1007/s00253-018-9285-x
  10. Comparative metabolism of the eight main bioactive ingredients of gegen qinlian decoction by the intestinal flora of diarrhoeal and healthy piglets vol.33, pp.3, 2009, https://doi.org/10.1002/bmc.4421
  11. Effects of dietary supplementation of enzymatic bio-conversion of Scutellaria baicalensis extract as an alternative to antibiotics on the growth performance, nutrient digestibility, fecal microbiota, vol.244, pp.None, 2009, https://doi.org/10.1016/j.livsci.2020.104307
  12. Simple and Rapid Method for Wogonin Preparation and Its Biotransformation vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22168973