참고문헌
- Ahrman, E., W. Lambert, J. A. Aquilina, C. V. Robinson, and C. S. Emanuelsson. 2007. Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Sci. 16: 1464-1478 https://doi.org/10.1110/ps.072831607
- Ahrman, E., W. Lambert, J. A. Aquilina, C. V. Robinson, and C. S. Emanuelsson. 2007. Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Extremophiles 11: 659-666 https://doi.org/10.1007/s00792-007-0080-3
- Basha, S. E., L. K. Friedrich, and E. Vierling. 2006. The Nterminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J. Biol. Chem. 281: 39943-39952 https://doi.org/10.1074/jbc.M607677200
- Buncher, J. 1996. Supervising the fold: Functional principles of molecular chaperones. FASEB J. 10: 10-19
- Collada, C., L. Gomez, R. Casado, and C. Aragoncillo. 1997. Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds. Plant Physiol. 115: 71-77 https://doi.org/10.1104/pp.115.1.71
- Ehrnsperger, M., S. Graber, M. Gaestell, and J. Buchner. 1997. Binding of non-native protein to HSp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 2: 221-229 https://doi.org/10.1093/emboj/16.2.221
- Fu, X. M., H. Zhang, X. Zhang, Y. Cao, W. Jiao, C. Liu, Y. Song, A. Abulimiti, and Z. Chang. 2005. A dual role for the Nterminal region of Mycobacterium tuberculosis Hsp16.3 in selfoligomerization and binding denaturing substrate proteins. J. Biol. Chem. 280: 6337-6348 https://doi.org/10.1074/jbc.M406319200
- Guo, S. J., H. Y. Zhou, X. S. Zhang, X. G. Li, and Q. W. Meng. 2007. Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI. J. Plant Physiol. 164: 126-136 https://doi.org/10.1016/j.jplph.2006.01.004
- Haslbeck, M. 2002. sHSPs and their role in the chaperone network. Cell. Mol. Life Sci. 59: 1649-1657 https://doi.org/10.1007/PL00012492
- Haslbeck, M., T. Franzmann, D. Weinfurtner, and J. Buchner. 2005. Some like it hot: The structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12: 842-846 https://doi.org/10.1038/nsmb993
- Haslbeck, M., A. Ignatiou, H. Saibil, S. Helmich, E. Frenzl, T. Stromer, and J. Buchner. 2004. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J. Mol. Biol. 343: 445-455 https://doi.org/10.1016/j.jmb.2004.08.048
- Helm, K. W., G. J. Lee, and E. Vierling. 1997. Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol. 114: 1477-1485 https://doi.org/10.1104/pp.114.4.1477
- Hsieh, M. H., J. T. Chen, T. L. Jinn, Y. M. Chen, and C. Y. Lin. 1992. A class of soybean low molecular weight heat shock proteins. Plant Physiol. 99: 1279-1284 https://doi.org/10.1104/pp.99.4.1279
- Jinn, T. L., S. H. Wu, C. H. Yeh, M. H. Hsieh, Y. C. Yeh, Y. M. Chen, and C. Y. Lin. 1993. Immunological kinship of class I low molecular weight heat shock proteins and thermostabilization of soluble proteins in vitro among plants. Plant Cell Physiol. 34: 1055-1062
- Jinn, T. L., Y. C. Yeh, Y. M. Chen, and C. Y. Lin. 1989. Stabilization of soluble proteins in vitro by heat shock proteinsenriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol. 30: 463-469
- Lee, G. J., A. M. Roseman, H. R. Saibil, and E. Vierling. 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16: 659-671 https://doi.org/10.1093/emboj/16.3.659
- Lee, G. J., N. Pokala, and E. Vierling. 1995. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270: 10432-10438 https://doi.org/10.1074/jbc.270.18.10432
- Lentze, N., J. A. Aquilina, M. Lindbauer, C. V. Robinson, and F. Narberhaus. 2004. Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. Eur. J. Biochem. 271: 2494-2503 https://doi.org/10.1111/j.1432-1033.2004.04180.x
- Leroux, M. R., R. Melki, B. Gordon, G. Batelier, and E. P. M. Candido. 1997. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272: 24646-24656 https://doi.org/10.1074/jbc.272.39.24646
-
Narberhaus, F. 2002.
$\alpha$ -Crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 6: 64-93 https://doi.org/10.1128/MMBR.66.1.64-93.2002 - Parsell, D. A. and S. Lindquist. 1993. The function of heatshock proteins stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496 https://doi.org/10.1146/annurev.ge.27.120193.002253
- Siddique, M., S. Gernhard, P. von Koskull-Doring, E. Vierling, and K. D. Scharf. 2008. The plant sHSP superfamily: Five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13: 183-197 https://doi.org/10.1007/s12192-008-0032-6
- Smykal, P., J. Masín, I. Hrdy, I. Konopasek, and V. Zarsky. 2000. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J. 23: 703-712 https://doi.org/10.1046/j.1365-313x.2000.00837.x
- Soto, A., I. Allona, C. C. Guevarama, R. Casado, C. E. Rodriguez, C. Aragoncillo, and L. Gomez. 1999. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120: 521-528 https://doi.org/10.1104/pp.120.2.521
- Stromer, T., E. Fischer, K. Richter, M. Haslbeck, and J. Buchner. 2004. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 279: 11222-11228 https://doi.org/10.1074/jbc.M310149200
- Sun, W., C. Bernard, B. V. Cotte, M. V. Montagu, and N. Verbruggen. 2001. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 27: 407-415 https://doi.org/10.1046/j.1365-313X.2001.01107.x
- Sun, W., M. V. Montagu, and N. Verbruggen. 2002. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 1577: 1-9 https://doi.org/10.1016/S0167-4781(02)00417-7
- Sun, Y. and T. H. MacRae. 2005. Small heat shock proteins: Molecular structure and chaperone function. Cell. Mol. Life Sci. 62: 2460-2476 https://doi.org/10.1007/s00018-005-5190-4
- Sun, Y. and T. H. MacRae. 2005. The small heat shock proteins and their role in human disease. FEBS J. 272: 2613-2627 https://doi.org/10.1111/j.1742-4658.2005.04708.x
- Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. 42: 579-620 https://doi.org/10.1146/annurev.pp.42.060191.003051
- Wang, Z., S. J. Landry, L. M. Gierasch, and P. A. Srere. 1992. Renaturation of citrate synthase: Influence of denaturant and folding assistants. Protein Sci. 1: 522-529 https://doi.org/10.1002/pro.5560010407
- Waters, E. R. and E. Vierling. 1999. The diversification of plant cytosolic small heat shock proteins preceded the divergence of Mosses. Mol. Biol. Evol. 16: 127-139 https://doi.org/10.1093/oxfordjournals.molbev.a026033
- Waters, E. R., G. J. Lee, and E. Vierling. 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47: 325-338 https://doi.org/10.1093/jxb/47.3.325
- Yeh, C. H., P. F. L. Chang, K. W. Yeh, W. C. Lin, Y. M. Chen, and C. Y. Lin. 1997. Microbiology expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. U.S.A. 94: 10967-10972 https://doi.org/10.1073/pnas.94.20.10967
피인용 문헌
- Eucalyptus Trees – Ageratina adenophora Complex System: A New Eco‐environmental Protection Model vol.42, pp.5, 2009, https://doi.org/10.1002/clen.201200642
- Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene vol.35, pp.9, 2018, https://doi.org/10.1093/molbev/msy138