DOI QR코드

DOI QR Code

Inhibition of Citrate Synthase Thermal Aggregation In Vitro by Recombinant Small Heat Shock Proteins

  • Gong, Weina (State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences) ;
  • Yue, Ming (Laboratory of Feed Ecology and Biotechnology, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Xie, Bingyan (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences) ;
  • Wan, Fanghao (State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences) ;
  • Guo, Jianying (State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
  • Published : 2009.12.31

Abstract

Small heat shock proteins (sHSPs) function as molecular chaperones that protect cells against environmental stresses. In the present study, the genes of hsp17.6 and hsp17.7, cytosolic class I sHSPs, were cloned from a tropical plant, Ageratina adenophorum. Their C-terminal domains were highly conserved with those of sHSPs from other plants, indicating the importance of the C-terminal domains for the structure and activity of sHSPs. The recombinant HSP17.6 and HSP17.7 were applied to determine their chaperone function. In vitro, HSP17.6 and HSP17.7 actively participated in the refolding of the model substrate citrate synthase (CS) and effectively prevented the thermal aggregation of CS at $45^{\circ}C$ and the irreversible inactivation of CS at $38^{\circ}C$ at stoichiometric levels. The prior presence of HSP17.7 was assumed to suppress the thermal aggregation of the model substrate CS. Therefore, this report confirms the chaperone activity of HSP17.6 and HSP17.7 and their potential as a protectant for active proteins.

Keywords

References

  1. Ahrman, E., W. Lambert, J. A. Aquilina, C. V. Robinson, and C. S. Emanuelsson. 2007. Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Sci. 16: 1464-1478 https://doi.org/10.1110/ps.072831607
  2. Ahrman, E., W. Lambert, J. A. Aquilina, C. V. Robinson, and C. S. Emanuelsson. 2007. Small heat shock proteins prevent aggregation of citrate synthase and bind to the N-terminal region which is absent in thermostable forms of citrate synthase. Extremophiles 11: 659-666 https://doi.org/10.1007/s00792-007-0080-3
  3. Basha, S. E., L. K. Friedrich, and E. Vierling. 2006. The Nterminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J. Biol. Chem. 281: 39943-39952 https://doi.org/10.1074/jbc.M607677200
  4. Buncher, J. 1996. Supervising the fold: Functional principles of molecular chaperones. FASEB J. 10: 10-19
  5. Collada, C., L. Gomez, R. Casado, and C. Aragoncillo. 1997. Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds. Plant Physiol. 115: 71-77 https://doi.org/10.1104/pp.115.1.71
  6. Ehrnsperger, M., S. Graber, M. Gaestell, and J. Buchner. 1997. Binding of non-native protein to HSp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 2: 221-229 https://doi.org/10.1093/emboj/16.2.221
  7. Fu, X. M., H. Zhang, X. Zhang, Y. Cao, W. Jiao, C. Liu, Y. Song, A. Abulimiti, and Z. Chang. 2005. A dual role for the Nterminal region of Mycobacterium tuberculosis Hsp16.3 in selfoligomerization and binding denaturing substrate proteins. J. Biol. Chem. 280: 6337-6348 https://doi.org/10.1074/jbc.M406319200
  8. Guo, S. J., H. Y. Zhou, X. S. Zhang, X. G. Li, and Q. W. Meng. 2007. Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of PSII and PSI. J. Plant Physiol. 164: 126-136 https://doi.org/10.1016/j.jplph.2006.01.004
  9. Haslbeck, M. 2002. sHSPs and their role in the chaperone network. Cell. Mol. Life Sci. 59: 1649-1657 https://doi.org/10.1007/PL00012492
  10. Haslbeck, M., T. Franzmann, D. Weinfurtner, and J. Buchner. 2005. Some like it hot: The structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12: 842-846 https://doi.org/10.1038/nsmb993
  11. Haslbeck, M., A. Ignatiou, H. Saibil, S. Helmich, E. Frenzl, T. Stromer, and J. Buchner. 2004. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J. Mol. Biol. 343: 445-455 https://doi.org/10.1016/j.jmb.2004.08.048
  12. Helm, K. W., G. J. Lee, and E. Vierling. 1997. Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol. 114: 1477-1485 https://doi.org/10.1104/pp.114.4.1477
  13. Hsieh, M. H., J. T. Chen, T. L. Jinn, Y. M. Chen, and C. Y. Lin. 1992. A class of soybean low molecular weight heat shock proteins. Plant Physiol. 99: 1279-1284 https://doi.org/10.1104/pp.99.4.1279
  14. Jinn, T. L., S. H. Wu, C. H. Yeh, M. H. Hsieh, Y. C. Yeh, Y. M. Chen, and C. Y. Lin. 1993. Immunological kinship of class I low molecular weight heat shock proteins and thermostabilization of soluble proteins in vitro among plants. Plant Cell Physiol. 34: 1055-1062
  15. Jinn, T. L., Y. C. Yeh, Y. M. Chen, and C. Y. Lin. 1989. Stabilization of soluble proteins in vitro by heat shock proteinsenriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol. 30: 463-469
  16. Lee, G. J., A. M. Roseman, H. R. Saibil, and E. Vierling. 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16: 659-671 https://doi.org/10.1093/emboj/16.3.659
  17. Lee, G. J., N. Pokala, and E. Vierling. 1995. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270: 10432-10438 https://doi.org/10.1074/jbc.270.18.10432
  18. Lentze, N., J. A. Aquilina, M. Lindbauer, C. V. Robinson, and F. Narberhaus. 2004. Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. Eur. J. Biochem. 271: 2494-2503 https://doi.org/10.1111/j.1432-1033.2004.04180.x
  19. Leroux, M. R., R. Melki, B. Gordon, G. Batelier, and E. P. M. Candido. 1997. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272: 24646-24656 https://doi.org/10.1074/jbc.272.39.24646
  20. Narberhaus, F. 2002. $\alpha$-Crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 6: 64-93 https://doi.org/10.1128/MMBR.66.1.64-93.2002
  21. Parsell, D. A. and S. Lindquist. 1993. The function of heatshock proteins stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496 https://doi.org/10.1146/annurev.ge.27.120193.002253
  22. Siddique, M., S. Gernhard, P. von Koskull-Doring, E. Vierling, and K. D. Scharf. 2008. The plant sHSP superfamily: Five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13: 183-197 https://doi.org/10.1007/s12192-008-0032-6
  23. Smykal, P., J. Masín, I. Hrdy, I. Konopasek, and V. Zarsky. 2000. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J. 23: 703-712 https://doi.org/10.1046/j.1365-313x.2000.00837.x
  24. Soto, A., I. Allona, C. C. Guevarama, R. Casado, C. E. Rodriguez, C. Aragoncillo, and L. Gomez. 1999. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120: 521-528 https://doi.org/10.1104/pp.120.2.521
  25. Stromer, T., E. Fischer, K. Richter, M. Haslbeck, and J. Buchner. 2004. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 279: 11222-11228 https://doi.org/10.1074/jbc.M310149200
  26. Sun, W., C. Bernard, B. V. Cotte, M. V. Montagu, and N. Verbruggen. 2001. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 27: 407-415 https://doi.org/10.1046/j.1365-313X.2001.01107.x
  27. Sun, W., M. V. Montagu, and N. Verbruggen. 2002. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 1577: 1-9 https://doi.org/10.1016/S0167-4781(02)00417-7
  28. Sun, Y. and T. H. MacRae. 2005. Small heat shock proteins: Molecular structure and chaperone function. Cell. Mol. Life Sci. 62: 2460-2476 https://doi.org/10.1007/s00018-005-5190-4
  29. Sun, Y. and T. H. MacRae. 2005. The small heat shock proteins and their role in human disease. FEBS J. 272: 2613-2627 https://doi.org/10.1111/j.1742-4658.2005.04708.x
  30. Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. 42: 579-620 https://doi.org/10.1146/annurev.pp.42.060191.003051
  31. Wang, Z., S. J. Landry, L. M. Gierasch, and P. A. Srere. 1992. Renaturation of citrate synthase: Influence of denaturant and folding assistants. Protein Sci. 1: 522-529 https://doi.org/10.1002/pro.5560010407
  32. Waters, E. R. and E. Vierling. 1999. The diversification of plant cytosolic small heat shock proteins preceded the divergence of Mosses. Mol. Biol. Evol. 16: 127-139 https://doi.org/10.1093/oxfordjournals.molbev.a026033
  33. Waters, E. R., G. J. Lee, and E. Vierling. 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47: 325-338 https://doi.org/10.1093/jxb/47.3.325
  34. Yeh, C. H., P. F. L. Chang, K. W. Yeh, W. C. Lin, Y. M. Chen, and C. Y. Lin. 1997. Microbiology expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. U.S.A. 94: 10967-10972 https://doi.org/10.1073/pnas.94.20.10967

Cited by

  1. Eucalyptus Trees – Ageratina adenophora Complex System: A New Eco‐environmental Protection Model vol.42, pp.5, 2009, https://doi.org/10.1002/clen.201200642
  2. Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene vol.35, pp.9, 2018, https://doi.org/10.1093/molbev/msy138