References
- Akashi, T., T. Aoki, and S.-I. Ayabe. 1999. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 121: 821-828 https://doi.org/10.1104/pp.121.3.821
- Arts, I. C. and P. C. Hollman. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81(1 Suppl): 317S-325S
- Cornwell, T., W. Cohick, and I. Raskin. 2004. Dietary phytoestrogens and health. Phytochemistry 65: 995-1016 https://doi.org/10.1016/j.phytochem.2004.03.005
- Dixon, R. A. 2004. Phytoestrogens. Annu. Rev. Plant Biol. 55: 225-261 https://doi.org/10.1146/annurev.arplant.55.031903.141729
- Fisher, R. F. and S. R. Long. 1992. Rhizobium-plant signal exchange. Nature 357: 655-660 https://doi.org/10.1038/357655a0
- Heller, W. 1986. Flavonoid biosynthesis: An overview, pp. 25-42. In V. Cody, E. Middleton, and J. B. Harbone (eds.). Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships. Alan R. Liss, New York
- Jung, W., O. Yu, S.-M. C. Lau, D. P. O'Keefe, J. Odell, G. Fader, and B. McGonigle. 2000. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotech. 18: 208-212 https://doi.org/10.1038/72671
- Katsuyama, Y., N. Funa, I. Miyahisa, and S. Horinouchi. 2007. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol. 14: 613-621 https://doi.org/10.1016/j.chembiol.2007.05.004
- Katsuyama, Y., M. Matsuzawa, N. Funa, and S. Horinouch. 2008. Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology 154: 2620-2628 https://doi.org/10.1099/mic.0.2008/018721-0
- Katsuyama, Y., I. Miyahisa, N. Funa, and S. Horinouchi. 2007. One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 73: 1143-1149 https://doi.org/10.1007/s00253-006-0568-2
- Kim, B. G., S.-Y. Kim, H. S. Song, C. Lee, H.-G. Hur, S.-I. Kim, and J.-H. Ahn. 2003. Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pretense. Mol. Cells 15: 301-306
- Kim, D. H., B. G. Kim, H. Y. Lee, Y. Lim, H. G. Hur, and J.-H. Ahn. 2005. Enhancement of isoflavone synthase activity by coexpression of P450 reductase from rice. Biotechnol. Lett. 27: 1291-1294 https://doi.org/10.1007/s10529-005-0221-7
- Leonard, E., Y. Yan, and M. A. G. Koffas. 2006. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab. Eng. 8: 172-181 https://doi.org/10.1016/j.ymben.2005.11.001
- Nelson, D. R., T. Kamataki, D. J. Waxman, F. P. Guengerich, R. W. Estabrook, et al. 1993. The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12: 1-51 https://doi.org/10.1089/dna.1993.12.1
- Oeda, K., T. Sakaki, and H. Ohkawa. 1985. Expression of rat liver cytochrome P-450MC cDNA in Saccharomyces cerevisiae. DNA 4: 203-210 https://doi.org/10.1089/dna.1985.4.203
- Otey, C. R., J. J. Silberg, C. A. Voigt, J. B. Endelman, G. Bandara, and F. H. Arnold. 2004. Functional evolution and structural conservation in chimeric cytochromes P450: Calibrating a structure-guided approach. Chem. Biol. 11: 309-318 https://doi.org/10.1016/j.chembiol.2004.02.018
- Porter, T. D., T. E. Wilson, and C. B. Kasper. 1987. Expression of a functional 78,000 dalton mammalian flavoprotein, NADPHcytochrome P450 oxidoreductase, in Escherichia coli. Arch. Biochem. Biophys. 254: 353-367 https://doi.org/10.1016/0003-9861(87)90111-1
- Tahara, S. 2007. A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci. Biotechnol. Biochem. 71: 1387-1404 https://doi.org/10.1271/bbb.70028
- Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485-493 https://doi.org/10.1104/pp.126.2.485
- Yan, Y., L. Huang, and M. A. Koffas. 2007. Biosynthesis of 5-deoxyflavanones in microorganisms. Biotechnol. J. 2: 1250-1262 https://doi.org/10.1002/biot.200700119
- Yan, Y., Z. Li, and M. A. Koffas. 2008. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol. Bioeng. 100: 126-140 https://doi.org/10.1002/bit.21721
Cited by
- 싸리에서 isoflavone synthase 유전자의 분리 및 생화학적 특성 vol.53, pp.1, 2010, https://doi.org/10.3839/jabc.2010.011
- A Gene‐Fusion Approach to Enabling Plant Cytochromes P450 for Biocatalysis vol.13, pp.18, 2009, https://doi.org/10.1002/cbic.201200572
- When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts vol.6, pp.None, 2009, https://doi.org/10.3389/fpls.2015.00007
- Functional expression of cytochrome P450 in <i>Escherichia coli</i>: An approach to functional analysis of uncharacterized enzymes for flavonoid biosynthesis vol.32, pp.3, 2015, https://doi.org/10.5511/plantbiotechnology.15.0605a
- Synthetic biology approaches for the production of plant metabolites in unicellular organisms vol.68, pp.15, 2009, https://doi.org/10.1093/jxb/erx119
- Modification of N-Terminal Amino Acids of Fungal Benzoate Hydroxylase (CYP53A15) for the Production of p-Hydroxybenzoate and Optimization of Bioproduction Conditions in Escherichia coli vol.28, pp.3, 2009, https://doi.org/10.4014/jmb.1711.11030
- Engineering the unicellular alga Phaeodactylum tricornutum for high‐value plant triterpenoid production vol.17, pp.1, 2019, https://doi.org/10.1111/pbi.12948
- Metabolic Engineering of Microorganisms for the Production of Flavonoids vol.8, pp.None, 2009, https://doi.org/10.3389/fbioe.2020.589069
- Biological Synthesis of Genistein in Escherichia coli vol.30, pp.5, 2009, https://doi.org/10.4014/jmb.1911.11009
- Functional characterization of cinnamate 4-hydroxylase from Helianthus annuus Linn using a fusion protein method vol.758, pp.None, 2009, https://doi.org/10.1016/j.gene.2020.144950
- Diversion of metabolic flux towards 5-deoxy(iso)flavonoid production via enzyme self-assembly in Escherichia coli vol.13, pp.None, 2009, https://doi.org/10.1016/j.mec.2021.e00185