DOI QR코드

DOI QR Code

Production of Genistein from Naringenin Using Escherichia coli Containing Isoflavone Synthase-Cytochrome P450 Reductase Fusion Protein

  • Kim, Dae-Hwan (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jung, Na-Ri (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2009.12.31

Abstract

Isoflavonoids are a class of phytoestrogens. Isoflavonone synthase (IFS) is responsible for the conversion of naringenin to genistein. IFS is a cytochrome P450 (CYP), and requires cytochrome P450 reductase (CPR) for its activity. Additionally, the majority of cytochrome P450s harbor a membrane binding domain, making them difficult to express in Escherichia coli. In order to resolve these issues, we constructed an inframe fusion of the IFS from red clover (RCIFS) and CPR from rice (RCPR) after removing the membrane binding domain from RCIFS and RCPR. The resultant fusion gene, RCIFS-RCPR, was expressed in E. coli. The conversion of naringenin into genistein was confirmed using this E. coli transformant. Following the optimization of the medium and cell density for biotransformation, $60\;{\mu}M$ of genistein could be generated from $80\;{\mu}M$ of naringenin. This fusion protein approach may be applicable to the expression of other P450s in E. coli.

Keywords

References

  1. Akashi, T., T. Aoki, and S.-I. Ayabe. 1999. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 121: 821-828 https://doi.org/10.1104/pp.121.3.821
  2. Arts, I. C. and P. C. Hollman. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81(1 Suppl): 317S-325S
  3. Cornwell, T., W. Cohick, and I. Raskin. 2004. Dietary phytoestrogens and health. Phytochemistry 65: 995-1016 https://doi.org/10.1016/j.phytochem.2004.03.005
  4. Dixon, R. A. 2004. Phytoestrogens. Annu. Rev. Plant Biol. 55: 225-261 https://doi.org/10.1146/annurev.arplant.55.031903.141729
  5. Fisher, R. F. and S. R. Long. 1992. Rhizobium-plant signal exchange. Nature 357: 655-660 https://doi.org/10.1038/357655a0
  6. Heller, W. 1986. Flavonoid biosynthesis: An overview, pp. 25-42. In V. Cody, E. Middleton, and J. B. Harbone (eds.). Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships. Alan R. Liss, New York
  7. Jung, W., O. Yu, S.-M. C. Lau, D. P. O'Keefe, J. Odell, G. Fader, and B. McGonigle. 2000. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotech. 18: 208-212 https://doi.org/10.1038/72671
  8. Katsuyama, Y., N. Funa, I. Miyahisa, and S. Horinouchi. 2007. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol. 14: 613-621 https://doi.org/10.1016/j.chembiol.2007.05.004
  9. Katsuyama, Y., M. Matsuzawa, N. Funa, and S. Horinouch. 2008. Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology 154: 2620-2628 https://doi.org/10.1099/mic.0.2008/018721-0
  10. Katsuyama, Y., I. Miyahisa, N. Funa, and S. Horinouchi. 2007. One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 73: 1143-1149 https://doi.org/10.1007/s00253-006-0568-2
  11. Kim, B. G., S.-Y. Kim, H. S. Song, C. Lee, H.-G. Hur, S.-I. Kim, and J.-H. Ahn. 2003. Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pretense. Mol. Cells 15: 301-306
  12. Kim, D. H., B. G. Kim, H. Y. Lee, Y. Lim, H. G. Hur, and J.-H. Ahn. 2005. Enhancement of isoflavone synthase activity by coexpression of P450 reductase from rice. Biotechnol. Lett. 27: 1291-1294 https://doi.org/10.1007/s10529-005-0221-7
  13. Leonard, E., Y. Yan, and M. A. G. Koffas. 2006. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab. Eng. 8: 172-181 https://doi.org/10.1016/j.ymben.2005.11.001
  14. Nelson, D. R., T. Kamataki, D. J. Waxman, F. P. Guengerich, R. W. Estabrook, et al. 1993. The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12: 1-51 https://doi.org/10.1089/dna.1993.12.1
  15. Oeda, K., T. Sakaki, and H. Ohkawa. 1985. Expression of rat liver cytochrome P-450MC cDNA in Saccharomyces cerevisiae. DNA 4: 203-210 https://doi.org/10.1089/dna.1985.4.203
  16. Otey, C. R., J. J. Silberg, C. A. Voigt, J. B. Endelman, G. Bandara, and F. H. Arnold. 2004. Functional evolution and structural conservation in chimeric cytochromes P450: Calibrating a structure-guided approach. Chem. Biol. 11: 309-318 https://doi.org/10.1016/j.chembiol.2004.02.018
  17. Porter, T. D., T. E. Wilson, and C. B. Kasper. 1987. Expression of a functional 78,000 dalton mammalian flavoprotein, NADPHcytochrome P450 oxidoreductase, in Escherichia coli. Arch. Biochem. Biophys. 254: 353-367 https://doi.org/10.1016/0003-9861(87)90111-1
  18. Tahara, S. 2007. A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci. Biotechnol. Biochem. 71: 1387-1404 https://doi.org/10.1271/bbb.70028
  19. Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485-493 https://doi.org/10.1104/pp.126.2.485
  20. Yan, Y., L. Huang, and M. A. Koffas. 2007. Biosynthesis of 5-deoxyflavanones in microorganisms. Biotechnol. J. 2: 1250-1262 https://doi.org/10.1002/biot.200700119
  21. Yan, Y., Z. Li, and M. A. Koffas. 2008. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol. Bioeng. 100: 126-140 https://doi.org/10.1002/bit.21721

Cited by

  1. 싸리에서 isoflavone synthase 유전자의 분리 및 생화학적 특성 vol.53, pp.1, 2010, https://doi.org/10.3839/jabc.2010.011
  2. A Gene‐Fusion Approach to Enabling Plant Cytochromes P450 for Biocatalysis vol.13, pp.18, 2009, https://doi.org/10.1002/cbic.201200572
  3. When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts vol.6, pp.None, 2009, https://doi.org/10.3389/fpls.2015.00007
  4. Functional expression of cytochrome P450 in <i>Escherichia coli</i>: An approach to functional analysis of uncharacterized enzymes for flavonoid biosynthesis vol.32, pp.3, 2015, https://doi.org/10.5511/plantbiotechnology.15.0605a
  5. Synthetic biology approaches for the production of plant metabolites in unicellular organisms vol.68, pp.15, 2009, https://doi.org/10.1093/jxb/erx119
  6. Modification of N-Terminal Amino Acids of Fungal Benzoate Hydroxylase (CYP53A15) for the Production of p-Hydroxybenzoate and Optimization of Bioproduction Conditions in Escherichia coli vol.28, pp.3, 2009, https://doi.org/10.4014/jmb.1711.11030
  7. Engineering the unicellular alga Phaeodactylum tricornutum for high‐value plant triterpenoid production vol.17, pp.1, 2019, https://doi.org/10.1111/pbi.12948
  8. Metabolic Engineering of Microorganisms for the Production of Flavonoids vol.8, pp.None, 2009, https://doi.org/10.3389/fbioe.2020.589069
  9. Biological Synthesis of Genistein in Escherichia coli vol.30, pp.5, 2009, https://doi.org/10.4014/jmb.1911.11009
  10. Functional characterization of cinnamate 4-hydroxylase from Helianthus annuus Linn using a fusion protein method vol.758, pp.None, 2009, https://doi.org/10.1016/j.gene.2020.144950
  11. Diversion of metabolic flux towards 5-deoxy(iso)flavonoid production via enzyme self-assembly in Escherichia coli vol.13, pp.None, 2009, https://doi.org/10.1016/j.mec.2021.e00185