DOI QR코드

DOI QR Code

Absorption, Distribution, Metabolism, and Excretion of Decursin and Decursinol Angelate from Angelica gigas Nakai

  • Published : 2009.12.31

Abstract

The pharmacokinetics of decursin and decursinol angelate (D/DA) were investigated in male SD rats following oral and intravenous administration. D/DA and metabolites obtained from in vitro samples were evaluated by LC/MS. The levels of D/DA and metabolized decursinol in the blood following oral and intravenous administrations declined according to first-order kinetics, with $T_{1/2}$ values of 56.67, 58.01, and 57.22 h, respectively, being observed after administration of a dose of 2 mg/kg body weight. The large intestine was the major site of disposition following oral administration. These data indicate that D/DA is rapidly absorbed from the gastrointestinal tract. In in vitro experiment utilizing liver microsomal protein, the major metabolic reaction of D/DA occurred to change decursinol. The cumulative biliary, urinary, and fecal excretions of D/DA in bile duct-cannulated rats was $36.10{\pm}2.9%$, $25.35{\pm}3.8%$, and $34.20{\pm}3.2%$, respectively, at 72 h after administration. These results indicate that the absorption of D/DA is almost complete, and that its metabolites are primarily excreted into feces through the bile. These results indicate that D/DA is subject to enterohepatic circulation.

Keywords

References

  1. Ahn, K. S., W. S. Sim, and I. H. Kim. 1996. Decursin: A cytotoxic agent and protein kinase C activator from the root of Angelica gigas. Planta Med. 62: 7-9 https://doi.org/10.1055/s-2006-957785
  2. Ahn, M. J., M. K. Lee, Y. C. Kim, and S. H. Sung. 2008. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J. Pharmaceut. Biomed. 46: 258-266 https://doi.org/10.1016/j.jpba.2007.09.020
  3. Konoshima, M., H. J. Chi, and K. Hata. 1968. Coumarins from the root of Angelica gigas Nakai. Chem. Pharm. Bull. 16: 1139-1140 https://doi.org/10.1248/cpb.16.1139
  4. Kang, S. Y., K. Y. Lee, S. H. Sung, M. J. Park, and Y. C. Kim. 2001. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase structure-activity relationships. J. Nat. Prod. 64: 683-685 https://doi.org/10.1021/np000441w
  5. Kim, K. M., T. H. Kim, Y. J. Park, I. H. Kim, and J. S. Kang. 2009. Evaluation of the genotoxicity of decursin and decursinol angelate produced by Angelica gigas Nakai. Mol. Cell. Toxicol. 5: 83-87
  6. Lee, S. H., Y. S. Lee, S. H. Jung, K. H. Shin, B. K. Kim, and S. S. Kang. 2003. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch. Pharm. Res. 26: 727-730 https://doi.org/10.1007/BF02976682
  7. Lee, S. H., D. S. Shin, J. S. Kim, K. B. Oh, and S. S. Kang. 2003. Antibacterial coumarins from Angelica gigas roots. Arch. Pharm. Res. 26: 449-452 https://doi.org/10.1007/BF02976860
  8. Lee, H. S., W. K. Choi, H. J. Son, S. S. Lee, J. K. Kim, S. K. Ahn, et al. 2004. Absorption, distribution, metabolism, and excretion of CKD-732, a novel antiangiogenic fumagillin derivative, in rats, mice, and dogs. Arch. Pharm. Res. 27: 265-272 https://doi.org/10.1007/BF02980116
  9. Lee, S. K., G. H. Kim, D. H. Kim, D. H. Kim, Y. Jahng, and T. C. Jeong. 2007. Identification of a tryptanthrin metabolite in rat liver microsomes by liquid chromatography/electrospray ionization-tandem mass spectrometry. Biol. Pharm. Bull. 30: 1991-1995 https://doi.org/10.1248/bpb.30.1991
  10. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  11. Ryu, K. S., N. D. Hong, N. J. Kim, and Y. Y. Kong. 1990. Studies on the coumarin constituents of the root of Angelica gigas Nakai. Isolation of decursinol angelate and assay of decursinol angelate and decursin. Kor. J. Pharmacogn. 21: 64-68
  12. Yim, D. S., R. P. Singh, C. Agarwal, S. Y. Lee, and H. J. Chi. 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res. 65: 1035-1044
  13. Yook, C. S. 1990. Coloured Medicinal Plants of Korea. Academy Book Co., Seoul, Korea

Cited by

  1. Pharmacokinetic characterization of decursinol derived from Angelica gigas Nakai in rats vol.41, pp.10, 2009, https://doi.org/10.3109/00498254.2011.587551
  2. 당귀 추출물 정맥 주사가 Middle Cerebral Artery Occlusion 모델 흰쥐에서 Gliosis 억제에 미치는 영향 vol.14, pp.3, 2009, https://doi.org/10.3831/kpi.2011.14.3.005
  3. Biopharmaceutical characterization of decursin and their derivatives for drug discovery vol.39, pp.10, 2009, https://doi.org/10.3109/03639045.2012.717296
  4. Cancer Chemoprevention with Korean Angelica: Active Compounds, Pharmacokinetics, and Human Translational Considerations vol.1, pp.6, 2009, https://doi.org/10.1007/s40495-015-0033-y
  5. Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis vol.15, pp.None, 2009, https://doi.org/10.1186/s12906-015-0589-4
  6. Angelica gigas Ameliorates Hyperglycemia and Hepatic Steatosis in C57BL/KsJ-db/db Mice via Activation of AMP-Activated Protein Kinase Signaling Pathway vol.44, pp.8, 2009, https://doi.org/10.1142/s0192415x16500919
  7. Inhibitory effect of Angelica gigas on cold-induced RhoA activation in vascular cells vol.15, pp.5, 2009, https://doi.org/10.3892/mmr.2017.6404
  8. Simultaneous Determination of Decursin, Decursinol Angelate, Nodakenin, and Decursinol of Angelica gigas Nakai in Human Plasma by UHPLC-MS/MS: Application to Pharmacokinetic Study vol.23, pp.5, 2009, https://doi.org/10.3390/molecules23051019
  9. Single-arm, open-label, dose-escalation phase I study to evaluate the safety of a herbal medicine SH003 in patients with solid cancer: a study protocol vol.8, pp.8, 2009, https://doi.org/10.1136/bmjopen-2017-019502
  10. Enhancement of Solubility and Nanonization of Phenolic Compound in Extrudate from Angelica gigas Nakai by Hot Melt Extrusion using Surfactant vol.26, pp.4, 2018, https://doi.org/10.7783/kjmcs.2018.26.4.317
  11. Fabrication of Nano-composites from the Radix of Angelica gigas Nakai by Hot Melt Extrusion Mediated Polymer Matrixs vol.26, pp.5, 2009, https://doi.org/10.7783/kjmcs.2018.26.5.417
  12. Effects of Angelica gigas Nakai on the production of decursin‐ and decursinol angelate‐enriched eggs vol.99, pp.6, 2009, https://doi.org/10.1002/jsfa.9526
  13. Functional efficacy analysis of Angelica gigas Nakai on chicken myoblast cells through cell-based in vitro assay vol.90, pp.7, 2009, https://doi.org/10.1111/asj.13212
  14. Antithrombotic Effect of the Ethanol Extract of Angelica gigas Nakai (AGE 232) vol.11, pp.9, 2009, https://doi.org/10.3390/life11090939
  15. Decursinol Angelate Mitigates Sepsis Induced by Methicillin-Resistant Staphylococcus aureus Infection by Modulating the Inflammatory Responses of Macrophages vol.22, pp.20, 2009, https://doi.org/10.3390/ijms222010950