DOI QR코드

DOI QR Code

Recombinant Expression and Characterization of Thermoanaerobacter tengcongensis Thermostable $\alpha$-Glucosidase with Regioselectivity for High-Yield Isomaltooligosaccharides Synthesis

  • Zhou, Cheng (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Xue, Yanfen (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Zhang, Yueling (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences) ;
  • Zeng, Yan (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Ma, Yanhe (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences)
  • Published : 2009.12.31

Abstract

A novel thermostable $\alpha$-glucosidase (TtGluA) from Thermoanaerobacter tengcongensis MB4 was successfully expressed in E. coli and characterized. The TtgluA gene contained 2,253 bp, which encodes 750 amino acids. The native TtGluA was a trimer with monomer molecular mass of 89 kDa shown by SDS-PAGE. The purified recombinant enzyme showed hydrolytic activity on maltooligosaccharides, p-nitrophenyl-$\alpha$-D-glucopyranide, and dextrin with an exotype cleavage manner. TtGluA showed preference for short-chain maltooligosaccharides and the highest specific activity for maltose of 3.26 units/mg. Maximal activity was observed at $60^{\circ}C$ and pH 5.5. The half-life was 2 h at $60^{\circ}C$. The enzyme showed good tolerance to urea and SDS but was inhibited by Tris. When maltose with the concentration over 50 mM was used as substrate, TtGluA was also capable of catalyzing transglycosylation to produce $\alpha$-1,4-linked maltotriose and $\alpha$-1,6-linked isomaltooligosaccharides. More importantly, TtGluA showed exclusive regiospecificity with high yield to produce $\alpha$-1,6-linked isomaltooligosaccharides when the reaction time extended to more than 10 h.

Keywords

References

  1. Antranikian, G., C. Herzberg, and G. Gottschalk. 1987. Production of thermostable $\alpha$-amylase, pullulanase, and $\alpha$-glucosidase in continuous culture by a new Clostridium isolate. Appl. Environ. Microbiol. 53: 1668-1673
  2. Antranikian, G. 1990. Physiology and enzymology of thermophilic bacteria degrading starch. FEMS Microbiol. Rev. 75: 201-218 https://doi.org/10.1111/j.1574-6968.1990.tb04095.x
  3. Bernhard, W., L. Friedrich, R. Johannes, and B. Karin. 1997. A novel type of thermostable $\alpha$-glucosidase from Thermoanaerobacter thermohydrosulfuricus exhibiting maltodextrinohydrolase activity. Biochem. J. 328: 581-586
  4. Broek, L. A. M., K. Struijs, J. C. Verdoes, G. Beldman, and A. G. J. Voragen. 2003. Cloning and characterization of two $\alpha$-glucosidases from Bifidobacterium adolescentis DSM20080. Appl. Microbiol. Biotechnol. 61: 55-60 https://doi.org/10.1007/s00253-002-1179-1
  5. Buchholz, K. and J. Seibel. 2003. Isomaltooligosaccharides, pp. 63-74. In G. Eggleston and G. L. Cote (eds.). Oligosaccharides in Food and Agriculture. ACS Symposium Series, Vol. 849. American Chemical Society, Washington, DC
  6. Chiba, S. 1997. molecular mechanism in $\alpha$-glucosidase and glucoamylase. Biosci. Biotech. Biochem. 61: 1233-1239 https://doi.org/10.1271/bbb.61.1233
  7. Crittenden, R. G. and M. J. Playne. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-361 https://doi.org/10.1016/S0924-2244(96)10038-8
  8. Ganghofner, D., J. Kellermann, W. L. Staudenbauer, and K. Bronnenmeier. 1998. Purification and properties of an amylopullulanase, a glucoamylase and $\alpha$-glucosidase in the amylolytic enzyme system of Thermoanaerobacterium thermosaccharolyticum. Biosci. Biotechnol. Biochem. 62: 302-308 https://doi.org/10.1271/bbb.62.302
  9. Giuseppina, A., G. Assunta, T. Annabella, M. Ernesto, and T. Antonio. 2006. Hydrolyses and transglycosylations performed by purified $\alpha$-D-glucosidase of the marine mollusk Aplysia fasciata. J. Biotechnol. 122: 274-284 https://doi.org/10.1016/j.jbiotec.2005.10.002
  10. Hannes, M. 1988. Purification and some properties of the extracelluar $\alpha$-amylase-pullulanase produced by Clostridium thermohydrosulfuricum. Biochem. J. 250: 813-818
  11. Hung, V. S., Y. Hatada, S. Goda, J. Lu, Y. Hidaka, Z. Li, et al. 2005. $\alpha$-Glucosidase from a strain of deep-sea Geobacillus: A potential enzyme for the biosynthesis of complex carbohydrates. Appl. Microbiol. Biotechnol. 68: 757-767 https://doi.org/10.1007/s00253-005-1977-3
  12. Kanda, T., H. Yatomi, S. Makishima, Y. Amano, and K. Nisizawa. 1989. Substrate specificities of exo- and endo-type cellulases in the hydrolysis of $\beta$-1,3- and $\alpha$-1,4-mixed D-glucans. J. Biochem. 150: 127-132
  13. Kato, N., S. Suyama, M. Shirokane, M. Kato, T. Kobayashi, and N. Tsukagoshi. 2002. Novel $\alpha$-glucosidase from Aspergillus nidulans with strong transglucosylation activity. Appl. Environ. Microbiol. 68: 1250-1256 https://doi.org/10.1128/AEM.68.3.1250-1256.2002
  14. Kimura, A., M. Takata, Y. Fukushi, H. Mori, H. Matsui, and S. Chiba. 1997. A catalytic amino acid and primary structure of active site in Aspergillus niger $\alpha$-glucosidase. Biosci. Biotech. Biochem. 61: 1091-1098 https://doi.org/10.1271/bbb.61.1091
  15. Kobayashi, I., M. Tokuda, H. Hashimoto, T. Konda, H. Nakano, and S. Kitahata. 2003. Purification and characterization of a new type of $\alpha$-glucosidase from Paecilomyces lilacinus that has transglucosylation activity to produce $\alpha$-1,3- and $\alpha$-1,2-linked oligosaccharides. Biosci. Biotechnol. Biochem. 67: 29-35 https://doi.org/10.1271/bbb.67.29
  16. Krasikov, V. V., D. V. Karelov, and L. M. Firsov. 2001. $\alpha$-Glucosidase. Biochemistry (Moscow) 66: 267-281 https://doi.org/10.1023/A:1010243611814
  17. Leveque, E., S. Janecek, B. Haye, and A. Belarbi. 2000. Thermophilic archaeal amylolytic enzymes. Enz. Microb. Technol. 26: 3-14 https://doi.org/10.1016/S0141-0229(99)00142-8
  18. Lu, L., M. Xiao, X. Xu, Z. Li, and Y. Li. 2007. A novel beta-galactosidase capable of glycosyl transfer from Enterobacter agglomerans B1. Biochem. Biophys. Res. Commun. 356: 78-84 https://doi.org/10.1016/j.bbrc.2007.02.106
  19. Madi, E., G. Antranikian, K. Ohmiya, and G. Gottschalk. 1987. Thermostable amylolytic enzymes from a new Clostridium isolate. Appl. Environ. Microbiol. 53: 1661-1667
  20. Mala, S., H. Dvorakova, R. Hrabal, and B. Kralova. 1999. Towards regioselective synthesis of oligosaccharides by use of alpha-glucosidases with different substrate specificity. Carbohydr. Res. 322: 209-218 https://doi.org/10.1016/S0008-6215(99)00222-0
  21. Mizrahi, L. and Y. Achituv. 1989. Effect of heavy metals ions on enzyme activity in the Mediterranean mussel, Donax trunculus. Bull. Environ. Contam. Toxicol. 42: 854-859 https://doi.org/10.1007/BF01701626
  22. Monsan, P. and F. Paul. 1995. Enzymatic synthesis of oligosaccharides. FEMS Microbiol. Rev. 16: 187-192 https://doi.org/10.1111/j.1574-6976.1995.tb00165.x
  23. Nakao, M., T. Nakayama, M. Harada, A. Kakudo, H. Ikemoto, S. Kobayashi, and Y. Shibano. 1994. Purification and characterization of a Bacillus sp. SAM1606 thermostable $\alpha$-glucosidase with transglucosylation activity. Appl. Microbiol. iotechnol. 41: 337-343 https://doi.org/10.1007/BF00221229
  24. Plou, F. J., M. T. Martin, S. Gomez, M. Alcalde, and A. Ballesteros. 2002. Glucosyltransferases acting on starch or sucrose for the synthesis of oligosaccharides. Can. J. Chem. 80: 743-752 https://doi.org/10.1139/v02-104
  25. Rolfsmeier, M. and P. Blum. 1995. Purification and characterization of a maltase from the extremely thermophilic Crenarchaeote Sulfolobus solfataricus. J. Bacteriol. 177: 482-485
  26. Suzuki, Y., M. Nobiki, M. Matsuda, and T. Sawa. 1997. Bacillus thermoamyloliquefaciens KP1071 $\alpha$-glucosidase I1 is a thermostble M, 540 000 homohexameric $\alpha$-glucosidase with both exo-$\alpha$-1,4-glucosidase and oligo-1,6-glucosidase activities. Eur. J. Biochem. 245: 129-136 https://doi.org/10.1111/j.1432-1033.1997.t01-1-00129.x
  27. Takenaka, F. and H. Uchiyama. 2000. Synthesis of alpha-Dglucosylglycerol by alpha-glucosidase and some of its characteristics. Biosci. Biotechnol. Biochem. 64: 1821-1826 https://doi.org/10.1271/bbb.64.1821
  28. Ulrike, S., M. Frank, and A. Garabed. 1991. Purification and properties of a thermoactive glucoamylase from Clostridium thermosaccharolyticum. Appl. Environ. Microbiol. 57: 2317-2323
  29. Xue, Y., Y. Xu, Y. Liu, Y. Ma, and P. Zhou. 2001. Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilicbacterium isolated from a hot spring in Tengcong, China. Int. J. Syst. Evol. Microbiol. 51: 1335-1341
  30. Yamamoto, T., T. Unno, Y. Watanabe, M. Yamamoto, M. Okuyama, H. Mori, S. Chiba, and A. Kimura. 2004. Purification and characterization of Acremonium implicatum $\alpha$-glucosidase having regioselectivity for $\alpha$-1,3-glucosidic linkage. Biochim. Biophys. Acta 1700: 189-198 https://doi.org/10.1016/j.bbapap.2004.05.002
  31. Zdzieblo, A. and Synowiecki. 2002. New source of the thermostable $\alpha$-glucosidase suitable for single step starch processing. Food Chem. 79: 485-491 https://doi.org/10.1016/S0308-8146(02)00224-8

Cited by

  1. Purification and Characterization of the ${\alpha}$-Glucosidase Produced by Thermophilic Fungus Thermoascus aurantiacus CBMAI 756 vol.48, pp.4, 2009, https://doi.org/10.1007/s12275-010-9319-2
  2. Characterization of the catalytic and kinetic properties of a thermostable Thermoplasma acidophilum α-glucosidase and its transglucosylation reaction with arbutin vol.72, pp.3, 2011, https://doi.org/10.1016/j.molcatb.2011.07.006
  3. Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes vol.18, pp.4, 2013, https://doi.org/10.1007/s12257-012-0777-8
  4. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11 vol.15, pp.None, 2009, https://doi.org/10.1186/s12896-015-0197-x
  5. Improved synthesis of isomaltooligosaccharides using immobilized α-glucosidase in organic–aqueous media vol.26, pp.3, 2009, https://doi.org/10.1007/s10068-017-0092-4