DOI QR코드

DOI QR Code

Thermostability of Chimeric Cytidine Deaminase Variants Produced by DNA Shuffling

  • Park, Yu-Mi (Department of Microbiology, Kyungpook National University) ;
  • Phi, Quyet Tien (Department of Microbiology, Kyungpook National University) ;
  • Song, Bang-Ho (Department of Biology Education, Kyungpook National University) ;
  • Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University)
  • Published : 2009.12.31

Abstract

The DNA shuffling technique has been used to generate libraries of evolved enzymes in thermostability. We have shuffled two thermostable cytidine deaminases (CDAs) from Bacillus caldolyticus DSM405 (T53) and B. stearothermophilus IFO12550 (T101). The shuffled CDA library (SH1067 and SH1077 from the first round and SH2426 and SH2429 from the second round) showed various patterns in thermostability. The CDAs of SH1067 and SH1077 were more thermostable than that of T53. SH2426 showed 150% increased halftime than that of T53 at $70^{\circ}C$. The CDA of SH2429 showed about 200% decreased thermostability than that of T53 at $70^{\circ}C$. A single amino acid residue replacement that presented between SH1077 and SH2429 contributed to dramatic changes in specific activity and thermostability. On SDS-PAGE, the purified CDA of SH1077 tetramerized, whereas that of SH2429 denatured and became almost monomeric at $80^{\circ}C$. A simulated three-dimensional structure for the mutant CDA was used to interpret the mutational effect.

Keywords

References

  1. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293-300
  2. Cambi, A., S. Vincenzetti, G. De Sanctis, J. Neuhard, P. Natalini, and A. Vita. 2001. Cytidine deaminase from two extremophilic bacteria: Cloning, expression and comparison of their structural stability. Protein Eng. 14: 807-813 https://doi.org/10.1093/protein/14.10.807
  3. Chang, J., B. H. Song, J. G. Kim, and S. D. Hong. 1989. Molecular cloning of Bacillus stearothermophilus cdd gene encoding thermostable cytidine/deoxycytidine deaminase. Kor. J. Appl. Microbiol. Bioeng 17: 334-342
  4. Dabrowski, S. and B. Kiaer Ahring. 2003. Cloning, expression, and purification of the His6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: Application in PCR. Protein Expr. Purif. 31: 72-78 https://doi.org/10.1016/S1046-5928(03)00108-6
  5. Flores, H. and A. D. Ellington. 2002. Increasing the thermal stability of an oligomeric protein, beta-glucuronidase. J. Mol. Biol. 315: 325-337 https://doi.org/10.1006/jmbi.2001.5223
  6. Hammer-Jespersen, K., A. Munch-Petersen, P. Nygaard, and M. Schwarz. 1971. Induction of enzymes involved in the catabolism of deoxyribonucleosides in Escherichia coli K-12. Eur. J. Biochem. 19: 533-538 https://doi.org/10.1111/j.1432-1033.1971.tb01345.x
  7. Hild, E., S. M. Brumbley, M. G. O'Shea, H. Nevalainen, and P. L. Bergquist. 2007. A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity. Appl. Microbiol. Biotechnol. 75: 1071-1078 https://doi.org/10.1007/s00253-007-0936-6
  8. Hong, S., K. D. Kim, B. H. Song, K. H. Jung, and S. Y. Ghim. 2002. Enhanced activity of cytidine deaminase by gene family shuffling. Kor. J. Microbiol. Biotechnol. 30: 298-304
  9. Johansson, E., N. Mejlhede, J. Neuhard, and S. Larsen. 2002. Crystal structure of the tetrameric cytidine deaminase from Bacillus subtilis at 2.0 A resolution. Biochemistry 41: 2563-2570 https://doi.org/10.1021/bi011849a
  10. Lai, C. L. and M. F. Yuen. 2000. Profound suppression of hepatitis B virus replication with lamivudine. J. Med. Virol. 61: 367-373 https://doi.org/10.1002/1096-9071(200007)61:3<367::AID-JMV15>3.0.CO;2-A
  11. Lorimer, I. A. and I. Pastan. 1995. Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of $Mn^{2+}$. Nucleic Acids Res. 23: 3067-3068 https://doi.org/10.1093/nar/23.15.3067
  12. Mahmoudian, M., B. S. Baines, C. S. Drake, R. S. Hale, P. Jones, J. E. Piercey, et al. 1993. Enzymatic production of optically pure (2'R-cis)-2'-deoxy-3'-thiacytidine (3TC, lamivudine): A potent anti-HIV agent. Enzyme Microb. Technol. 15: 749-755 https://doi.org/10.1016/0141-0229(93)90005-M
  13. May, O., P. T. Nguyen, and F. H. Arnold. 2000. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of $_{L}-methionine$. Nat. Biotechnol. 18: 317-320 https://doi.org/10.1038/73773
  14. Morley, K. L. and R. J. Kazlauskas. 2005. Improving enzyme properties: When are closer mutations better? Trends Biotechnol. 23: 231-237 https://doi.org/10.1016/j.tibtech.2005.03.005
  15. Moyle, G. J., B. G. Gazzard, D. A. Cooper, and J. Gatell. 1998. Antiretroviral therapy for HIV infection. A knowledge-based approach to drug selection and use. Drugs 55: 383-404 https://doi.org/10.2165/00003495-199855030-00005
  16. Patten, P. A., R. J. Howard, and W. P. Stemmer. 1997. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8: 724-733 https://doi.org/10.1016/S0958-1669(97)80127-9
  17. Song, B. H. and J. Neuhard. 1989. Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase. Mol. Gen. Genet. 216: 462-468 https://doi.org/10.1007/BF00334391
  18. Suen, W. C., N. Zhang, L. Xiao, V. Madison, and A. Zaks. 2004. Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Eng. Des. Sel. 17: 133-140 https://doi.org/10.1093/protein/gzh017
  19. Vincenzetti, S., G. De Sanctis, S. Costanzi, G. Cristalli, P. Mariani, G. Mei, et al. 2003. Functional properties of subunit interactions in human cytidine deaminase. Protein Eng. 16: 1055-1061 https://doi.org/10.1093/protein/gzg117
  20. Vogt, G., S. Woell, and P. Argos. 1997. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 269: 631-643 https://doi.org/10.1006/jmbi.1997.1042
  21. Woo, J.-H., N.-J. Heo, S.-Y. Ghim, J.-G. Kim, and B.-H Song. 2002. Purification and characterization of thermostable cytidine deaminase encoded by the Bacillus caldolyticus cdd gene. Enzyme Microb. Technol. 30: 153-160 https://doi.org/10.1016/S0141-0229(01)00480-X
  22. Woo, J.-H., H.-J. Shin, T.-H. Kim, S.-Y. Ghim, L.-S. Jeong, J.-G. Kim, and B.-H. Song. 2001. Lamivudine production via enantioselective deamination by thermostable Bacillus caldolyticus cytidine deaminase. Biotechnol. Lett. 23: 131-135 https://doi.org/10.1023/A:1010353502346
  23. Xiong, A. S., R. H. Peng, Z. M. Cheng, Y. Li, J. G. Liu, J. Zhuang, et al. 2007. Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability. Protein Eng. Des. Sel. 20: 319-325 https://doi.org/10.1093/protein/gzm023
  24. Zuo, Z.-Y., Z.-L. Zheng, Z.-G. Liu, Q.-M. Yi, and G.-L. Zou. 2007. Cloning, DNA shuffling and expression of serine hydroxymethyltransferase gene from Escherichia coli strain AB90054. Enz. Microb. Technol. 40: 569-577 https://doi.org/10.1016/j.enzmictec.2006.05.018

Cited by

  1. Utilizing natural diversity to evolve protein function: applications towards thermostability vol.15, pp.3, 2009, https://doi.org/10.1016/j.cbpa.2011.03.005