화이트바이오텍기반 방향족화합물 개발에 관한 연구동향

Research Trend about the Development of White Biotech-Based Aromatic Compounds

  • 이진호 (경성대학교 식품생명공학과, 공학기술연구소)
  • Lee, Jin-Ho (Department of Food Science & Biotechnology, Kyungsung University)
  • 발행 : 2009.12.28

초록

원유의 고갈, 반복되는 에너지 위기 및 지구온난화 문제에 기인하여 석유 대신 재생가능한 바이오매스를 사용하여 방향족 화학원료를 개발하는 연구가 광범위하게 진행되고 있다. 특히, 바이오테크놀로지를 이용한 포도당으로부터 방향족아미노산 생합성경로 중간대사체 및 그 유도체 합성기술은 벤젠유래 화합물을 포함한 많은 방향족 석유화학원료를 대체할 가능성이 있는 기술들이 개발되고 있다. 본 고는 미생물 대사공학, 생물전환, 화학공정 기술을 이용하여 hydroquinone, catechol, adipic acid, shikimic acid, gallic acid, pyrogallol, vanillin, p-hydroxycinnamic acid, p-hydroxystyrene, p-hydroxybenzoic acid, indigo, indole 3-acetic acid와 같은 방향족화합물을 어떻게 개발하고 있는지를 논하였다. 또한, 경쟁력있는 화이트바이오텍기반 방향족화합물 생산기술을 개발하기 위한 문제점 및 해결방안등을 논했다.

Due to the depleting petroleum reserve, recurring energy crisis, and global warming, it is necessary to study the development of white biotech-based aromatic chemical feedstock from renewable biomass for replacing petroleum-based one. In particular, the production of aromatic intermediates and derivatives in biosynthetic pathway of aromatic amino acids from glucose might be replaced by the production of petrochemical-based aromatic chemical feedstock including benzene-derived aromatic compounds. In this review, I briefly described the production technology for hydroquinone, catechol, adipic acid, shikimic acid, gallic acid, pyrogallol, vanillin, p-hydroxycinnamic acid, p-hydroxystyrene, p-hydroxybenzoic acid, indigo, and indole 3-acetic acid using metabolic engineering, bioconversion, and chemical process. The problems and possible solutions regarding development of production technology for competitive white biotech-based aromatic compounds were also discussed.

키워드

참고문헌

  1. Barker, J. L. and J. W. Frost. 2001. Microbial synthesis of phydroxybenzoic acid from glucose. Biotech. Bioeng. 76: 376-390 https://doi.org/10.1002/bit.10160
  2. Berry, A. 1996. Improving production of aromatic compounds in Escherichia coli by metabolic engineering. TIBTECH. 14: 250-256
  3. Berry, A., T. C. Dodge, M. Pepsin, and W. Weyler. 2002. Application of metabolic engineering to improve both the production and use of biotech indigo. J. Indust. Microbiol. Biotech. 28: 127-133 https://doi.org/10.1038/sj.jim.7000228
  4. Buss, K., R. Muller, C. Dahm, N. Gaitatzis, E. S. Pietraszek, S. Lohmann, M. Gassen, and E. Leistner. 2001. Clustering of isochorismate synthase genes menF and entC and channeling of isochorismate in Escherichia coli. Biochim. Biophys. Acta. 1522: 151-157 https://doi.org/10.1016/S0167-4781(01)00325-6
  5. Cavin, J. F., L. Barthelmebs, and C. Divies. 1997. Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl. Environ. Microbiol. 63: 1939-1944
  6. Chandran, S. S., J. Yi, K. M. Draths, R. von Daeniken, W. Weber, and J. W. Frost. 2003. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol. Prog. 19: 808-814 https://doi.org/10.1021/bp025769p
  7. Dosselaere, F., and J. Vanderleyden. 2001. A Metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit. Rev. Micro. 27: 75-131 https://doi.org/10.1080/20014091096710
  8. Entsch, B., B. A. Palfey, D. P. Ballou, and V. Massey. 1991. Catalytic function of tyrosine residues in para-hydroxybenzoate hydroxylase as determined by the study of sitedirected mutants. J. Bio. Chem. 266: 17341-17349
  9. Eschrich, K., J. T. Frank, A.de KOK, and J. H. Willem. 1993. Role of Tyr201 and Tyr385 in substrate activation by p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur. J. Biochem. 216: 137-146 https://doi.org/10.1111/j.1432-1033.1993.tb18125.x
  10. Flanaginagin, L. W., V. K. Singh, and C. G. Willson. 1999. Molecular model of phenolic polymer dissolution in photolithography. J. Pol. Sci. 37: 2103-2113 https://doi.org/10.1002/(SICI)1099-0488(19990815)37:16<2103::AID-POLB13>3.0.CO;2-5
  11. Franke, D., V. Lorbach, S. Esser, C. Dose, G. A. Sprenger, M. Halfar, J. Thommes, R. Muller, R. Takors, and M. Muller. 2003. (S,S)-2,3-Dihydroxy-2,3-dihydrobenzoic acid: microbial access with engineered cells of Escherichia coli and application as starting material in natural-product synthesis. Chem. Eur. J. 9: 4188-4196 https://doi.org/10.1002/chem.200204265
  12. Gibson, J. M., P. S. Thomas, J. D. Thomas, J. L. Barker, S. S. Chandran, M. K. Harrup, K. M. Draths, and J. W. Frost. 2001. Benzene-free synthesis of phenol. Angew. Chem. Int. Ed. 40: 1945-1948 https://doi.org/10.1002/1521-3773(20010518)40:10<1945::AID-ANIE1945>3.0.CO;2-5
  13. Holden, M. J., M. P. Mayhew, D. T. Gallagher, and V. L. Vilker. 2002. Chorismate lyase: kinetics and engineering for stability. Biochim. Biophys. Acta. 1594: 160-167 https://doi.org/10.1016/S0167-4838(01)00302-8
  14. http://chem.ebn.co.kr/
  15. http://www.ebn.co.kr/news/n_view.html?id=373795&kind=rank_code&keys=2
  16. http://www.biosafety.or.kr/index.asp
  17. http://www.europabio.org/positions/DSM-WB.pdf
  18. http://www.chemlocus.co.kr/
  19. http://www.frostchemlab.com/index.htm
  20. http://www.wikipedia.org/
  21. Ikeda, M. 2006. Towards bacterial strains overproducing Ltryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626 https://doi.org/10.1007/s00253-005-0252-y
  22. Jeong, S. H., C. K. Song, and M. Yi. 2009. Capacitance enhancement in the accumulation region of C-V characteristics in metal-insulator-semiconductor capacitors consisting of pentacene and poly-4-vinylphenol. Appl. Phys. Lett. 94:183302 https://doi.org/10.1063/1.3130084
  23. Kambourakis, S., K. M. Draths, and J. W. Frost. 2000. Synthesis of gallic acid and pyrogallol from glucose: replacing natural product isolation with microbial catalysis. J. Am. Chem. Soc. 122: 9042-9043 https://doi.org/10.1021/ja000853r
  24. Kerbarh, O., A. Ciulli, N. I. Howard, and C. Abell. 2005. Salicylate biosynthesis: overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. J. Bacteriol. 187: 5061-5066 https://doi.org/10.1128/JB.187.15.5061-5066.2005
  25. Kerbarh, O., E. M. M. Bulloch, R. J. Payne, T. Sahr, F. Rebeille, and C. Abell. 2005. Mechanistic and inhibition studies of chorismate utilizing enzymes. Biochem. Soc. Trans. 33: 763-766 https://doi.org/10.1042/BST0330763
  26. Kikuchi, Y. T. and K. O. Kurahashi. 1997. Mutational analysis of the feedback sites of phenylalanine-sensitive 3- deoxy-D-arabino-heptulosonate-7-hosphate synthase of Escherichia coli. Appl. Environ. Microbiol. 63:761-762
  27. Kramer, M., J. Bongaerts, R. Bovenberg, S. Kremer, U. Muller, S. Orf, M. Wubbolts, and L. Raeven. 2003. Metabolic engineering for microbial production of shikimic acid. Meta. Eng. 5: 277-283 https://doi.org/10.1016/j.ymben.2003.09.001
  28. Li, K. and J. W. Frost. 1998. Synthesis of vanillin from glucose. J. Am. Chem. So. 120: 10545-10546 https://doi.org/10.1021/ja9817747
  29. Li, K. and J. W. Frost. 1999. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources. Biotechnol. Prog. 15: 876-883 https://doi.org/10.1021/bp990095c
  30. Li, K., M. R. Mikola, K. M. Draths, R. M. Worden, J. W. Frost. 1999. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Biotech. Bioeng. 64: 61-73 https://doi.org/10.1002/(SICI)1097-0290(19990705)64:1<61::AID-BIT7>3.0.CO;2-G
  31. Li, W., D. Xie, and J. W. Frost. 2005. Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis. J. Am. Cnem. Soc. 127: 2874-2882 https://doi.org/10.1021/ja045148n
  32. Mullera, U., F. Assemac, M. Gunsiord, S. Orfa, S. Kremera, D. Schipperb, A. Wagemansc, C. A. Townsendd, T. Sonkec, R. Bovenberga, and M. Wubbolts. 2006. Metabolic engineering of the E. coli L-phenylalanine pathway for the production of D-phenylglycine. Meta. Eng. 8: 196-208 https://doi.org/10.1016/j.ymben.2005.12.001
  33. Nichols, B. and J. M. Green.1992. Cloning and sequencing of Escherichia coli ubiC and purification of chorismate lyase. J. Bacteriol. 174: 5309-5316
  34. Niu, W., K. M. Draths, and J. W. Frost. 2002. Benzene-free synthesis of adipic acid. Biotechnol. Prog. 18: 201-211 https://doi.org/10.1021/bp010179x
  35. Patten, C. L. and B. R. Glick. 2002. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can. J. Microbiol. 48: 635-642 https://doi.org/10.1139/w02-053
  36. Priefert, H., J. Rabenhorst, and A. Steinbüchel. 2001. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56:296-314 https://doi.org/10.1007/s002530100687
  37. Ran, N., D. R. Knop, K. M. Draths, and J. W. Frost. 2001. Benzene-free synthesis of hydroquinone. J. Am. Chem. Soc. 123: 10927-10934 https://doi.org/10.1021/ja016460p
  38. Ray, J. M and B. C. Yanofsky. 1988. Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3- deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J. Bacteriol. 170: 5500-5506
  39. Sariaslani, F. S. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu. Rev. Microbiol. 61: 51-69 https://doi.org/10.1146/annurev.micro.61.080706.093248
  40. Stadthagen, G.., J. Kordulakova, R. Griffin, P. Constant, I. Bottova, N. Barilone, B. Gicquel, M. Daffe, and M. Jackson. 2005. p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. J. Biol. Chem. 280: 40699-40706 https://doi.org/10.1074/jbc.M508332200
  41. Sprenger, G. A. 2007. From scratch to value: engineering Escherichia coli wild type cells to the production of Lphenylalanine and other fine chemicals derived from chorismate. Appl. Microbiol. Biotechnol. 75: 739-749 https://doi.org/10.1007/s00253-007-0931-y
  42. Trotman, R. J. C. E. Camp, A. B. Bassat, R. DiCosimo, L. Huang, G. A. Crum, F. S. Sariaslani, and S. L. Haynie. 2007. Calcium alginate bead immobilization of cells containing tyrosine ammonia lyase activity for use in the production of p-hydroxycinnamic acid. Biotechnol. Prog. 23: 638-644 https://doi.org/10.1021/bp060379e
  43. Qia, W. W., T. Vannellib, S. Breinigc, A. Ben-Bassatd, A. A. Gatenbye, S. L. Hayniee, and F. S. Sariaslani. 2007. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Meta. Eng. 9: 268-276 https://doi.org/10.1016/j.ymben.2007.01.002
  44. Verhoef, S., H. J. Ruijssenaars, J. A.M. Bont, and J. Wery. 2007. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J. Biotech. 132: 49-56 https://doi.org/10.1016/j.jbiotec.2007.08.031
  45. Verhoef, S., N. Wierckx, R. G. M. Westerhof, J. H. Winde, and H. J. Ruijssenaars. 2009. Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl. Environ. Micribiol. 75: 931-936 https://doi.org/10.1128/AEM.02186-08
  46. Viitanen, P. V., A. L. Devine, M. S. Khan, D. L. Deuel, D. E. Dyk, and H. Daniell. 2004. Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol. 136:4048-4060 https://doi.org/10.1104/pp.104.050054
  47. Weaver, L. M. and K. M. Herrmann. 1990. Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-Darabino- heptulosonate-7-phosphate synthase. J. Bacteriol. 172:6581-6584
  48. Yi, J., K. M. Draths, K. Li, and J. W. Frost. 2003. Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol. Prog. 19: 1450-1459 https://doi.org/10.1021/bp0340584