DOI QR코드

DOI QR Code

Effects of Optical Characteristics on the Growth of Benthic Microalga, Nitzschia sp. and Its Growth Kinetics of Phosphate for Bioremediation

생물적 환경정화를 위한 부착미세조류 Nitzschia sp.의 생장에 미치는 광학적 특성과 그에 따른 인산염 성장 동력학

  • Oh, Seok-Jin (Korea Inter-University Institute of Ocean Science, Pukyong National University) ;
  • Kang, In-Seok (Department of Fisheries Science, Graduate School of Chonnam National University) ;
  • Yoon, Yang-Ho (Department of Fisheries Science, Graduate School of Chonnam National University) ;
  • Yang, Han-Soeb (Korea Inter-University Institute of Ocean Science, Pukyong National University) ;
  • Park, Jong-Sick (Department of Fisheries Science, Graduate School of Chonnam National University)
  • 오석진 (부경대학교 해양과학공동연구소) ;
  • 강인석 (전남대학교 대학원 수산과학과) ;
  • 윤양호 (전남대학교 대학원 수산과학과) ;
  • 양한섭 (부경대학교 해양과학공동연구소) ;
  • 박종식 (전남대학교 대학원 수산과학과)
  • Published : 2009.11.30

Abstract

To suggest possible to bioremediation by benthic microalgae Nitzschia sp. isolated from the Jinhae Bay, the studies investigated the effects o flight quality and quantity on the growth of Nitzschia sp. and its growth kinetics for phosphate investigated. The Nitzschia sp. was cultured under blue (450 nm), yellow (590 nm) and red wavelength (650 nm) using light emitting diode (LED) and mixed wavelengths using a fluorescent lamp. The maximum specific growth rate showed the Nitzschia sp. under blue wavelength, although photoinhibition was observed above $100\;{\mu}mol\;m^{-2}\;s^{-1}$. Mixed wavelengths were also observed by decreasing the maximum cell density from high irradiances (>$100\;{\mu}mol$ photons $m^{-2}\;s^{-1}$). The compensation photon flux density ($I_0$) calculated from the mixed wavelengths equated to a depth of 4-10 m in Jinhae Bay, and was lower in the summer season than the depth due to suspended matter (ca. 4 m). Thus, the suitable depth for maximum growth of Nitzschia sp. might be extremely limited. In the growth kinetics for phosphate, half-saturation constant ($K_s$) was similar among different wavelengths, although the maximum growth rate was varied among different wavelengths. Because the $K_s$ was high than that of the phytoplankton, Nitzschia sp. might have adapted to the high nutrient concentrations, and have effective nutrient storage in the cell quota. Thus, Nitzschia sp. may be a useful species for bioremediation of the benthic layer in polluted inner bays by means of irradiated specific wavelength as blue.

부착미세조류에 의한 생물적 환경정화의 가능성을 시험하기 위해서 Nitzschia sp.(진해만 클론원종)을 이용하여, 생장에 미치는 광도 및 파장의 영향과 인산염 생장 동력학 실험을 수행하였다. 파장은 발광다이오드를 이용하여 청색(450 nm), 황색(590 nm), 적색(650 nm)그리고 형광등을 이용한 복수파장이었다. 청색파장에서 Nitzschia sp.의 생장은 다른 파장보다 높았으나, $100\;{\mu}mol$ photons $m^{-2}\;s^{-1}$ 이상의 광량에서는 광저해현상을 보였다. 복수파장에서도 높은 광량($100\;{\mu}mol$ photons $m^{-2}\;s^{-1}$이상)에서 최대세포밀도가 감소하는 현상이 나타났다. 진해만에서 복수파장의 보상광량($I_0$)에 해당하는 수심은 4-10 m이며, 부유물질에 따라 하계에는 수심(약 4m)이 극히 낮았다. 따라서 최대생장을 보일 수 있는 수심은 제한될 것으로 보인다. 생장동력학 실험에 따라 유도된 파장별 최대생장속도는 달랐지만, 반포화상수($K_s$)는 큰 차이가 없었다. $K_s$는 다른 부유성 미세조류와 비교하여 높아, 높은 인산염 환경에 적응되어 있으며, 세포내 인의 축척효율이 높을 것으로 보인다. 따라서 저층에 특정파장(생장 촉진효과를 보인 청색파장 등)을 주사함으로써 Nitzschia sp.의 생장을 촉진시켜 부영양화 된 저질의 영양염을 효과적으로 제거할 수 있을 것으로 보이며, 이에 따라 빈산소 문제도 해소할 수 있어 생물적 환경정화에 유용한 대상 종으로 생각된다.

Keywords

References

  1. 기상청. 2006-2007. 기상윌보
  2. 노일현, 윤양호, 김대일, 오석진, 2006. 가막만에서 분리한 유해성 침편모조류 Chattonella marina (Subrshmanyn) Hara et Chihara (Raphidophyceae)의 성장에 미치는 수온, 염분 및 빛의 영향. 한국수산학회지, 39: 487-494 https://doi.org/10.5657/kfas.2006.39.6.487
  3. 오석진, 박달수, 양한섭, 윤양호, 2007. 발광다이오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저지환갱개선 1. 저서규조류 Nitzschia sp. 성장에 영향을 미치는 광량과 파장. 해양환경공학회지, 10: 93-101
  4. 오석진, 2008. 저질 환경 개선을 위한 Nitzschia sp.의 영양염 흡수 동력학, 한국수산학회지, 41: 301-304 https://doi.org/10.5657/kfas.2008.41.4.301
  5. 오석진, 윤양호, 山本民次, 양한섭 2009. 실내 배양시 부착기질 크기에 따른 저서성 미세조류 Nitzscia sp.의 성장 특성. 한국해양환경공학회지, 12: 91-95
  6. 박종규, 허성회, 정해진, 2001. 진해만의 식물플랑크톤:I. 광 환경에 따른 광합성 특성과 열차생산력. 한국조류학회지 (AIgae), 16: 189-196
  7. Brand, L.E., R.R.L. Guillard and L.S. Murphy, 1981. A method for the rapid and precise etermination of acclimated phytoplankton reproduction rates. J. Plankton Res., 3: 193-201 https://doi.org/10.1093/plankt/3.2.193
  8. Brotas, V. and F. Catarino, 1995. Microphytobenthos primary production of Tagues estuary interidal flats (Portugal). Net. J Aquat. Ecol., 29: 333-339 https://doi.org/10.1007/BF02084232
  9. Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments. Their role(s) in foodwebs and marine processes. Oceanogr. Mar. Biol. Annu. Rev., 28: 73-153
  10. Dugdale, R.C., 1967. Nutrient limitation in the sea: dynamic, identification, and significance. Limnol. Oceanogr., 12: 685-695 https://doi.org/10.4319/lo.1967.12.4.0685
  11. Epply, R.W., J.N. Roger and J.J. McCarthy, 1969. Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr., 14: 912-920 https://doi.org/10.4319/lo.1969.14.6.0912
  12. Fukami, K., N. Murata, Y. Morio and T. Nishijima, 2002. Improvement of eutrophic coastal bottom environments by using an optical fiber and effective psychrophilic bacteria. Fish. Sci., 68: 617-620
  13. Gallagher, J. C., 1982. Physiological variation and electrophoretic banding pattems of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J. phycol., 18: 148-162 https://doi.org/10.1111/j.1529-8817.1982.tb03169.x
  14. Guillard, R.R.L. and D. Ryther, 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea(Cleve) Gran. Can. J. Microbiol. 8: 229-239 https://doi.org/10.1139/m62-029
  15. Guillard, R.R.L. and P.E. Hargraves, 1993. Strichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 32: 234-236 https://doi.org/10.2216/i0031-8884-32-3-234.1
  16. Keller, M.D., R.C. Selvin, W. Claus and R.R.L. Guillard, 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23: 633-638
  17. Koblents-Mishke, O.I., 1979, Photosynthesis of marine phytoplankton as a function of underwater irradiance. Soviet Plant Physiol., 26: 737-746
  18. Lederman, T.C. and P. Tett, 1981. Problems in modeling the photosynthesis- light relationship for phytoplankton. Bot. Mar., 24:125-134 https://doi.org/10.1515/botm.1981.24.3.125
  19. Nishikawa, T., K. Miyahara and S. Nagai, 2002. The growth response of Coscinodiscus wailesii Gran (Bacillariophyceae) as a function of irradiance isolated from Harima-Nada, Seto Inland Sea, Japan. Bulletin of Plankton Society of Japan 49: 1-8
  20. Nishikawa, T. and M. Yamaguchi, 2006. Effect of temperature on light-limited growth of the harmful diatom Eucampia zodiacus Ehrenberg, a causative organism in the discoloration of Porphyrathalli. Harmful Algae, 5: 141-147 https://doi.org/10.1016/j.hal.2005.06.007
  21. Nybakken J.W. and M.D. Bertness, 2004. Marine biology: An ecological approach, 6th ed. Benjamin Cummings, NY, 592 pp
  22. Paterson, D.M., 1989, Short-term change in the erodibility of intertidal cohesive sediments related to the migratory behaviour or epipelic diatoms. Limnol. Oceanogr., 34: 223-234 https://doi.org/10.4319/lo.1989.34.1.0223
  23. Ruangdej, U. and K. Fukami, 2004. Stimulation of photosynthesis and consequent oxygen production in anoxic bottom water by supply of low-intensity light through an optical fiber. Fish. Sci., 70: 421-429 https://doi.org/10.1111/j.1444-2906.2004.00821.x
  24. Smith, D.J and G.J.C. Underwood, 1988. Exopolymer production by intertidal epipelic diatoms. Limnol. Oceanogr., 43: 1578-1591
  25. Smith, R.C. and K.S. Baker, 1980. Biologically effective dose transmitted by culture bottles in $^{14}C$ productivity measurements. Limnol. Oceanogr., 25: 364-366 https://doi.org/10.4319/lo.1980.25.2.0364
  26. Steele, J.H., 1962. Environmental control of photosynthesis in sea. Limnol. Oceanogr., 7: 137-150 https://doi.org/10.4319/lo.1962.7.2.0137
  27. Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In: Plankton Ecology, edited by Sommer, U., Springer-Verlag, Berlin, pp. 57-106
  28. Yamamoto, T., S.J. Oh and I. Goto, 2004. Effects of temperaure, salinity and irradiance on the growth of microphytobenthos Nitzschia sp. jpn. J. Phycol. (Srui), 52: 5-11
  29. Yamamoto, T., I. Goto, O. Kawaguchi, K. Minagawa, E. Ariyoshi and O. Matsuda, 2007. Phytoremediation of shallow organically enriched marine sediments using benthic miroalgae. Mar. Poll. Bull.. 57: 108-115 https://doi.org/10.1016/j.marpolbul.2007.10.006
  30. Vargo, G.A. and D. Howard-Hhamblott, 1990. Phosphorus dynamics in Ptychodiscusbrevis: Cellphosphorus, uptake and growth requirements. In: Toxic Marine Phytoplankton, Proc. 4th Int. Conf., EIsevier, New York, pp. 324-329
  31. 山口峰生, 松山幸彦, 1994. 珪素類fにおける養の利用特性及ぴChattonellaとの養競合. 有害赤潮の生態的制御による被害防止技術の開にする究報告書, 77-91