DOI QR코드

DOI QR Code

Backbone NMR assignments of a putative secretory protein from Helicobacter pylori, using a high-field (900 MHz) NMR

  • Sim, Dae-Won (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Ahn, Hee-Chul (Chemical Analysis Center, Korea Institute of Science and Technology) ;
  • Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
  • Published : 2009.12.20

Abstract

The HP0902, a homodimeric 22.1 kDa protein, has been suggested as a putative secretory protein from Helicobacter pylori, although the protein possesses no signal peptide for secretion. Since it may be associated with the virulence of the bacterium, NMR study has been initiated in terms of structural genomics. In our previous effort to assign the backbone NMR resonances, using 800MHz NMR machine at pH 7.8, the resonances from eight of the 99 residues could not be assined due to missing of the signals. In this work, to enhance the extent of assignments, a 900 MHz machine was employed and the sample pH was reduced down to 6.5. Finally, almost all signals, except for those from G9 and S24, could be clearly assigned. The determined secondary structure using the assined chemical shifts indicated that the HP0902 consists of 11 ${\beta}$-strands with no helices. In our database search result, HP0902 was predicted to interact with VacA (Vacuolating cytotoxin A), which is a representative virulence factor secreted from Helicobacter pylori. Thus, molecular interaction between HP0902 and VacA would be worthy of investigation, on the basis of the present results of NMR assignments.

Keywords

References

  1. Ferreira, A. C., Isomoto, H., Moriyama, M., Fujioka, T., Machado, J. C., Yamaoka, Y. Helicobacter. 1, 28-34 (2008)
  2. Bartnik, W. Pol. Arch. Med. Wewn. 118, 426 (2008)
  3. Covacci, A., Telford, J. L., del Giudice, G., Parsonnet, J., Rappuoli, R. Science. 284, 1328-1333 (1999) https://doi.org/10.1126/science.284.5418.1328
  4. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback, T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C., Bowman, C., Watthey, L., Wallin, E., Hayes , W. S., Borodovsky, M., Karp, P. D., Smith, H. O., Fraser, C. M., Venter, J. C. Nature. 388, 539-547 (1997) https://doi.org/10.1038/41483
  5. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., Smith, D. R., Noonan, B., Guild, B. C., deJonge, B. L., Carmel, G., Tummino, P. J., Caruso, A., Uria-Nickelsen, M., Mills, D. M., Ives, C., Gibson, R., Merberg, D., Mills, S. D., Jiang, Q., Taylor, D. E., Vovis, G. F., Trust, T. J. Nature. 397, 176-180 (1999) https://doi.org/10.1038/16495
  6. Oh, J. D., Kling-Backhed, H., Giannakis, M., Xu, J., Fulton, R. S., Fulton, L. A., Cordum, H. S., Wang, C., Elliott, G., Edwards, J., Mardis, E. R., Engstrand, L. G., Gordon, J. I. Proc. Natl. Acad. Sci. U.S.A. 103, 9999-10004 (2006) https://doi.org/10.1073/pnas.0603784103
  7. Sim, D.-W., Lee, Y.-S., Kim, J.-H., Seo, M.-D., Lee, B.-J., Won, H.-S. BMB reports 42, 387-392 (2009) https://doi.org/10.5483/BMBRep.2009.42.6.387
  8. Kim, N. Y., Weeks, D. L., Shin, J. M., David, R. S., Young, M. K., Sachs, H. J. Bacteriol, 184, 6155-6162 (2002) https://doi.org/10.1128/JB.184.22.6155-6162.2002
  9. Nam, W. H.; Lee, S. M.; Kim, E. S.; Kim, J. H.; Jeong, J. Y. J. Life Sci. 2007, 17, 723. https://doi.org/10.5352/JLS.2007.17.5.723
  10. Gangwer, K.A., Mushrush, D.J., Stauff, D.L., Spiller, B., McClain, M.S., Cover, T.L. Proc. Natl. Acad. Sci. U.S.A 104, 16293-16298 (2007) https://doi.org/10.1073/pnas.0707447104
  11. Cover, T.L., Blanke, S.R. Nat. Rev. Microbiol. 3, 320-332 (2005) https://doi.org/10.1038/nrmicro1095
  12. Dunwell, J.M., Purvis, A., Khuri, S. Phytochemistry. 65, 7-17 (2004) https://doi.org/10.1016/j.phytochem.2003.08.016
  13. Rain, J.-C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel , F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A., Legrain, P. Nature. 409, 211-215 (2001) https://doi.org/10.1038/35051615
  14. Lin, C.-Y., Chen, C.-L., Cho, C.-S., Wang, L.-M., Chang, C.-M., Chen, P.-Y., Lo, C.-Z., Hsiung, C.A. Bioinformatics. 21, 1288-1290 (2005) https://doi.org/10.1093/bioinformatics/bti101
  15. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., Bax, A. J. Biomol. NMR. 6, 277-293 (1995)
  16. Johnson, B. A. Methods Mol. Biol. 278, 313-352 (2004)
  17. Won, H.-S.; Yamazaki, T., Lee, T.-W., Jee, J.-G., Yoon, M.-K., Park, S.-H., Otomo, T., Aiba, H., Kyogoku, Y., Lee, B.-J. J. Biomol. NMR. 16, 79-80 (2000) https://doi.org/10.1023/A:1008398103476

Cited by

  1. Oxidation-Induced Conformational Change of a Prokaryotic Molecular Chaperone, Hsp33, Monitored by Selective Isotope Labeling vol.15, pp.2, 2011, https://doi.org/10.6564/JKMRS.2011.15.2.137
  2. Structural Characterization of the J-domain of Tid1, a Mitochondrial Hsp40/DnaJ Protein vol.16, pp.1, 2012, https://doi.org/10.6564/JKMRS.2012.16.1.022
  3. Crystallization and X-ray data collection of HP0902 fromHelicobacter pylori26695 vol.67, pp.12, 2011, https://doi.org/10.1107/S1744309111039315