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CHUNG-TYPE LAW OF THE ITERATED LOGARITHM OF

l
∞-VALUED GAUSSIAN PROCESSES

Yong-Kab Choi, Zhenyan Lin, and Wensheng Wang

Abstract. In this paper, by estimating small ball probabilities of l
∞-

valued Gaussian processes, we investigate Chung-type law of the iter-
ated logarithm of l∞-valued Gaussian processes. As an application, the
Chung-type law of the iterated logarithm of l∞-valued fractional Brown-
ian motion is established.

1. Introduction and main results

Let {Y (t), t ≥ 0} = {Xk(t), t ≥ 0}∞k=1 be a sequence of independent centered
Gaussian processes with stationary increments σ2

k(h) = E(Xk(t+h)−Xk(t))
2,

where σk(h) is assumed to be a non-decreasing function in h for each k ≥ 1.
Put

(1.1) σ∗(h) = max
k≥1

σk(h).

There has been a lot of papers to study the limit behavior of Y (·). For
path properties, Csáki and Csörgő [1] investigated the moduli of continuity
for Y (·) ∈ lp, 1 ≤ p ≤ 2. Applying a general Fernique type inequality and
well-known Borell inequality, Csörgő and Shao [4] studied the increments of
Y (·) ∈ lp for every 1 ≤ p < ∞. Wang and Zhang [14] studied Chung-type law
of the iterated logarithm (LIL) of Y (·) ∈ lp for every 1 ≤ p < ∞. When Y (·) is
an l∞-valued process, Csörgő et al. [2] and Lin and Qin [9] studied the moduli of
continuity and large increment theorem of Y (·) respectively. Up to now, as far
as we know, little is known on limit inferior behavior of Y (·) ∈ l∞. In this paper,
by estimating small ball probabilities of Y (·) ∈ l∞, we investigate Chung-type
LIL of l∞-valued Gaussian processes. As an immediate consequence of our
results, we establish Chung-type law of the iterated logarithm of l∞-valued
fractional Brownian motion.

Received August 5, 2007.
2000 Mathematics Subject Classification. 60G15, 60G17, 60F10, 60F15.
Key words and phrases. small ball probability, Gaussian process, law of the iterated

logarithm.
Research supported by NSFC (10771070), DPFMEC (20060269016), KRF (2007-314-

C00028).

c©2009 The Korean Mathematical Society

347



348 YONG-KAB CHOI, ZHENYAN LIN, AND WENSHENG WANG

Hoffmann-Jørgensen et al. [5] studied the lower tail probability of l∞-valued
Gaussian processes. They studied the behavior of

P (max
k≥1

|Xk(1) − Xk(0)| ≤ ε) as ε → 0+.

But up to now, as far as we know, little is known for the behavior of

(1.2) P ( sup
0≤t≤1

max
k≥1

|Xk(t) − Xk(0)| ≤ ε) as ε → 0+.

One of the purposes of this present paper is to estimate small ball probabilities
of l∞-valued Gaussian processes. We obtain a sharp bound for (1.2) in this
paper.

It is well known that by the Borel-Cantelli lemma, one can easily obtain
a lower bound of limit inferior provided that an upper bound of small ball
probability is available. However, deducing an upper bound of limit inferior
from the small ball probability need certain independence and it is not so
obvious. In this paper, we use the spectral representation of Gaussian processes
(as [11] or [13] did) to get the necessary independence.

Our main results read as follows.

Theorem 1.1. Assume that the following conditions are satisfied:

(i) Xk(0) = 0 with probability one for every k ≥ 1;
(ii) σ∗(h)/hα is quasi-increasing on (0, 1) for some α > 0;
(iii) there exists 0 < τ < 2 such that

σ∗(2h) ≤ τσ∗(h), ∀ 0 < h < 1/2;

(iv) max
k≥1

max
i≥3

E{(Xk(2x) − Xk(x))(Xk(ix) − Xk((i − 1)x))} ≤ 0;

(v) there exist positive constants A1 and θ0, which are independent of k,

such that

inf
0<s≤1/2

σ∗(s)

σk(s)
≥ A1σ

−1
k (θ0) for every k ≥ 1;

(vi) there exist A2 > 0, p ≥ 1 and r > 1 such that for any n ≥ 1
∞
∑

k=n+1

σk(θ0)
p ≤ A2n

−rp,

where θ0 is as in (v). Then there exists a positive constant A3 such

that

(1.3) 1/A3 ≤ lim inf
h→0

sup
0≤t≤h

max
k≥1

|Xk(t)|
σ∗(h/ log log(1/h))

≤ A3 a.s..

Remark 1.2. If condition (iv) is replaced by the following condition:
(iv)

′
there exists τ ∈ (0, 4) such that σ2

k(2x) ≤ τσ2
k(x) for 0 ≤ x ≤ 1/2 and

each k ≥ 1; moreover,

max
k≥1

max
i≥2

E
{

(Xk(3x) + Xk(x) − 2Xk(2x))(Xk((2i + 1)x) + Xk((2i − 1)x) − 2Xk(2ix))
}

≤0,
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then (1.3) remains true.

In order to prove Theorem 1.1, we need to estimate small ball probabilities
of l∞-valued Gaussian processes, which will be given in Section 2. The proof
of Theorem 1.1 will be given in Section 3. Applications to l∞-valued fractional
Brownian motion are discussed in Section 4.

In what follows, we will use K to denote unspecified positive and finite
constants whose value may be different in each occurrence. Constants that are
referred to in the sequel will be denoted by A1, A2, . . . .

2. Small ball probabilities of l
∞-valued Gaussian processes

In this section we concern small ball probabilities of l∞-valued Gaussian
processes. Theorems 2.1 and 2.2 below give a sharp bound for (1.2).

Theorem 2.1. We have that

(a) if condition (iv) is satisfied, then there exists a positive constant A4 such

that for any 0 < x ≤ 1/4

(2.1) P
(

sup
0≤t≤1

max
k≥1

|Xk(t) − Xk(0)| ≤ σ∗(x)
)

≤ e−A4/x;

(b) if condition (iv)
′
is satisfied, then (2.1) remains true.

Theorem 2.2. If conditions (ii), (v), and (vi) are satisfied, then there exists

a positive constant A5 such that for any 0 < x ≤ 1

(2.2) P
(

sup
0≤t≤1

max
k≥1

|Xk(t) − Xk(0)| ≤ A5σ
∗(x)

)

≥ e−A5/x.

The proof of Theorem 2.2 needs a Khatri-Sdák type lemma.

Lemma 2.3. Let {Y (t), t ∈ T } = {Xk(t), t ∈ T }∞k=1 be a sequence of inde-

pendent centered separable Gaussian processes, {λ(t), t ∈ T } be a positive real

function, where T ⊂ R. Then for any t0 ∈ T

P
(

sup
t∈T

max
k≥1

|Xk(t) − Xk(0)|
λ(t)

≤ 1
)

≥ P
(

sup
t∈T/{t0}

max
k≥1

|Xk(t) − Xk(0)|
λ(t)

≤ 1
)

P
(

max
k≥1

|Xk(t0) − Xk(0)|
λ(t0)

≤ 1
)

.

It is an immediately consequence of Proposition 1.2.2 in [10].

Proof of Theorem 2.1. (a) Take v = v(x) such that σv(x) = σ∗(x). Clearly

(2.3) max
k≥1

|Xk(ix) − Xk((i − 1)x)|
σ∗(x)

≥ Xv(ix) − Xv((i − 1)x)

σv(x)
=: ξ(x, i).
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Then, by Slepian’s inequality (cf., e.g., [8]),

P
(

sup
0≤t≤1

max
k≥1

|Xk(t) − Xk(0)| ≤ σ∗(x)
)

≤ P
(

max
1≤i≤[1/x]

max
k≥1

|Xk(ix) − Xk((i − 1)x)| ≤ 2σ∗(x)
)

≤ P
(

max
2≤i≤[1/x]

ξ(x; i) ≤ 2
)

≤ (Φ(2))[1/x]−1 ≤ exp
{ log Φ(2)

2x

}

,

which implies the desired result. Here, and in the sequel, [·] is the greatest
integer function.

(b) Let

η(x; i) = ξ(x; 2i) − ξ(x; 2i − 1), 2 ≤ i ≤ [1/(2x)],

where ξ(x; i) is as above. Then, a direct calculation shows that

E{η2(x; i)} = 4σ2
v(x) − σ2

v(2x) ≥ (4 − τ)σ2
v(x), 2 ≤ i ≤ [1/(2x)].

Hence, by Slepian’s lemma again, we obtain

P
(

sup
0≤t≤1

max
k≥1

|Xk(t) − Xk(0)| ≤ σ∗(x)
)

≤ P
(

max
1≤i≤[1/x]

max
k≥1

|Xk(ix) − Xk((i − 1)x)| ≤ 2σ∗(x)
)

≤ P
(

max
1≤i≤[1/x]

ξ(x; i) ≤ 2
)

≤ P
(

max
2≤i≤[1/(2x)]

η(x, i) ≤ 4
)

≤
[1/(2x)]

∏

i=2

Φ(4/
√

4 − τ ) ≤ exp
{ log Φ(4/

√
4 − τ )

4x

}

.

Hence (2.1) is true. This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. For each 0 ≤ t ≤ 1 we can write t =
∑∞

l=1 εl2
−l, where

εl = 0 or 1. Hence

(2.4) sup
0≤t≤1

max
k≥1

|Xk(t)−Xk(0)| ≤
∞
∑

l=1

max
1≤i≤2l

max
k≥1

|Xk(i2−l)−Xk((i− 1)2−l)|.

Let n0 be a positive integer such that

1/x ≤ 2n0 ≤ 2/x.

By condition (ii), fix c such that

σ∗(x)/xα ≤ cσ∗(y)/yα for all 0 < x < y < 1.



CHUNG-TYPE LIL OF l∞-VALUED GAUSSIAN PROCESSES 351

For 2 < θ < 2
√

2 with logθ 2 > 1/r, where r is given in condition (vi), define

xl = σ∗((θ/2)−|l−n0|x)(1 − 2−α/2)/(2c), l = 1, 2, . . . .

Since σ∗(x)/xα is quasi-increasing, we have for 0 < a < 1 that σ∗(ax) ≤
caασ∗(x). Hence

∞
∑

l=1

xl ≤
∞
∑

l=1

(θ/2)−|l−n0|ασ∗(x)(1 − 2−α/2)/2

≤
∞
∑

l=0

(θ/2)−lασ∗(x)(1 − 2−α/2)

= σ∗(x)(1 − 2−α/2)/(1 − (2/θ)α)

≤ σ∗(x)

since 2 < θ < 2
√

2.
Let c0 be a constant satisfying

c0 ≥ 2cA−1
1 (4A2)

1/p(1 − 2−α/2)−1(E|N(0, 1)|p)1/p,

where A1 and A2 are as in conditions (v) and (vi) respectively. By Lemma 2.3
and (2.4) we have

B := P
(

sup
0≤t≤1

max
k≥1

|Xk(t) − Xk(0)| ≤ c0σ
∗(x)

)

≥
∞
∏

l=1

∏

1≤i≤2l

P
(

max
k≥1

|Xk(i2−l) − Xk((i − 1)2−l)| ≤ c0xl

)

=
∞
∏

l=1

(

P
(

max
k≥1

|Xk(2−l) − Xk(0)|
σ∗(2−l)

≤ c0xl/σ∗(2−l)
))2l

.

Let r0 be a large positive number, which is independent of n0 and x, and
will be specified later on. Put

Zl := Z(l) = max
k≥1

|Xk(2−l) − Xk(0)|
σ∗(2−l)

,

D1l := D1(n0, l) =
1

2c

(1

θ

)n0−l

(1 − 2−α/2)

and

D2l := D2(n0, l) =
1

2c2
(1 − 2−α/2)(4/θ)α(l−n0).

Then by rewriting B we obtain

B ≥ B1 × B2 × B3,

where

B1 :=

n0
∏

l=1

(

P
(

Zl ≤ c0xl/σ∗(2−l)
))2l

,
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B2 :=

n0+r0
∏

l=n0+1

(

P
(

Zl ≤ c0xl/σ∗(2−l)
))2l

and

B3 :=

∞
∏

l=n0+r0+1

(

P
(

Zl ≤ c0xl/σ∗(2−l)
))2l

.

Since 2−n0 ≤ x, σ∗(·) is non-decreasing,

θn0−lσ∗((θ/2)−(n0−l)2−n0) ≥ σ∗(2−l)

by Minkowski’s inequality and Xk(·), k = 1, 2, . . . are independent, we have

(2.5)

B1 ≥
n0
∏

l=1

(P (Zl ≤ c0D1l))
2l

=

n0
∏

l=1

P
(

max
1≤k≤n

|Xk(2−l) − Xk(0)| ≤ c0D1lσ
∗(2−l)

)

×P
(

max
k≥n+1

|Xk(2−l) − Xk(0)| ≤ c0D1lσ
∗(2−l)

)

for any positive integer n.
Let 0 < β < 1 such that β ≥ 1

r logθ 2 . From conditions (v) and (vi), it is easy

to see that

(2.6)

sup
l≥1

∞
∑

k=[2β(n0−l)]+1

σk(2−l)p

σ∗(2−l)p
≤ A−p

1

∞
∑

k=[2β(n0−l)]+1

σk(θ0)
p

≤ A−p
1 A22

−β(n0−l)rp

≤ 4−1(2c)−p(1 − 2−α/2)pcp
0δ

−p
p θ−pn.

Choosing n = [2β(n0−l)], we have by (2.6)

(2.7)

P
(

max
k≥n+1

|Xk(2−l) − Xk(0)| ≤ c0D1lσ
∗(2−l)

)

≥ 1 − c−p
0 D−p

1l (σ∗(2−l))−p
∞
∑

k=n+1

E|Xk(2−l) − Xk(0)|p

≥ 1 − 2c−p
0 D−p

1l (σ∗(2−l))−pδp
p

∞
∑

k=n+1

σk(2−l)p

≥ 1/2.

Next, noting that

P (|N(0, 1)| ≤ y) ≥ 2 exp(−y2
0/2)y/

√
2π for 0 ≤ y ≤ y0 with y0 > 0,
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and Xk(·), k = 1, 2, . . . are independent, we have

(2.8)

P
(

max
1≤k≤n

|Xk(2−l) − Xk(0)| ≤ c0D1lσ
∗(2−l)

)

≥
n

∏

k=1

P
(

|Xk(2−l) − Xk(0)| ≤ c0D1lσk(2−l)
)

≥ (P (|N(0, 1)| ≤ c0D1l)
n

≥ (c0 exp(−c2
0/2)D1l/(

√
2π))n.

Combining these estimates we arrive at

(2.9) P (Zl ≤ c0D1l) ≥
(

c0 exp(−c2
0/2)D1l/(

√
2π)

)n

/2.

Therefore (note that we have taken n = [2β(n0−l)] above),
(2.10)

B1 ≥
n0
∏

l=1

(P (Zl ≤ c0D1l))
2l

≥
n0
∏

l=1

exp
{

2l(n log(c0 exp(−c2
0/2)) + n log D1l − n log(

√
2π) − log 2)

}

= exp
{

−
n0
∑

l=1

2ln(− log(c0 exp(−c2
0/2)) + log(2c/(1 − 2−α/2))

+ (n0 − l) log θ + log 6)
}

≥ exp
{

− 2n0

n0
∑

l=1

2−(1−β)(n0−l)(| log(c0 exp(−c2
0/2))| + log(2c/(1 − 2−α/2))

+ (n0 − l) log θ + log 6)
}

≥ exp{−c12
n0},

where c1 > 0 is a constant.
Now σ∗(h)/hα quasi-increasing and x2n0 ≥ 1, together imply

B2 (or B3) ≥
n0+r0
∏

l=n0+1

(or

∞
∏

l=n0+r0+1

)
(

P
(

Zl ≤
1

2c2
c0(1 − 2−α/2)(4/θ)α(l−n0)

))2l

=:

n0+r0
∏

l=n0+1

(or

∞
∏

l=n0+r0+1

)(P (Zl ≤ c0D2l))
2l

.

Following the same lines of the estimation for B1 (but choosing n = [2β(l−n0)]
instead of n = [2β(n0−l)]), we have that there exists a constant c2 > 0 such that

(2.11) B2 ≥ exp{−c22
n0}.
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Now consider B3. Note that

(2.12) P (|N(0, 1)| ≤ y) ≥ exp(−3e−y2/2) for y > 1.

Choose r0 = r0(α, θ) large enough such that 1
4 (1−2−α/2)(4/θ)αr0c0 ≥ 1. Then,

we have

(2.13)

P
(

max
k≥1

|Xk(2−l) − Xk(0)| ≤ c0D2lσ
∗(2−l)

)

=

∞
∏

k=1

P
(

|N(0, 1)| ≤ c0D2l
σ∗(2−l)

σk(2−l)

)

≥ exp
{

− 3
∞
∑

k=1

e
−c2

0D2
2l

(σ∗(2−l))2

2σ2
k
(2−l)

}

.

Combining these estimates we arrive at

B3 ≥ exp
{

−3

∞
∑

l=n0+r0+1

∞
∑

k=1

2l exp
{

− c2
0(2c2)−2(1 − 2−α/2)2(4/θ)2α(l−n0)

(σ∗(2−l))2

2σ2
k(2−l)

}}

.

From condition (vi), it is easy to see that

(2.14)

∞
∑

k=1

d−σ−2
k

(θ0) < ∞ for d > 1.

Thus, by condition (v) and (2.14) we have

B3 ≥ exp
{

−2n0 × 3

∞
∑

v=r0+1

∞
∑

k=1

2v exp{−c2
0(2c2)−2(1 − 2−α/2)2(4/θ)2αv (σ∗(2−v−n0))2

2σ2
k(2−v−n0)

}
}

≥ exp
{

−2n0 × 3
∞
∑

v=r0+1

∞
∑

k=1

exp{−c2
0(2c2)−2(1 − 2−α/2)2(4/θ)2αv (σ∗(2−v−n0))2

4σ2
k(2−v−n0)

}
}

≥ exp
{

−2n0 × 3

∞
∑

v=r0+1

exp{−c2
0(2c2)−2(1 − 2−α/2)2(4/θ)2αv}

×
∞
∑

k=1

exp{−c2
0(2c2)−2(1 − 2−α/2)2(4/θ)2αr0 × A2

2

1

4σ2
k(θ0)

}
}

≥ exp{−c32
n0},

where c3 > 0 is a constant. Hence, with c4 = c1 + c2 + c3, we have

B ≥ exp{−c42
n0} ≥ exp{−2c4/x},

which implies (2.2) with A5 = max{c0, 2c4} immediately. �

3. Proof of Theorem 1.1

We first prove the following two general theorems, which may be of inde-
pendent interest.
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Theorem 3.1. Assume that condition (ii) is satisfied, and that there exist two

positive constants x0 and A6 such that for any 0 < x ≤ x0,

(3.1) P
(

sup
0≤t≤1

max
k≥1

|Xk(t) − Xk(0)| ≤ σ∗(x)
)

≤ e−A6/x.

Then

(3.2) lim inf
h→0

sup
0≤t≤h

max
k≥1

|Xk(t) − Xk(0)|
σ∗(A6h/ log log(1/h))

≥ 1 a.s.,

where A6 is the constant in (3.1).

Proof. Using (3.1) and the standard argument, one can obtain (3.2) easily. �

Theorem 3.2. Assume that conditions (i), (ii), (iii), (v), and (vi) are satisfied,

and that there exists a positive constant A7 such that for any 0 < x ≤ 1,

(3.3) P
(

sup
0≤t≤1

max
k≥1

|Xk(t)| ≤ A7σ
∗(x)

)

≥ e−A7/x.

Then we have

(3.4) lim inf
h→0

sup
0≤t≤h

max
k≥1

|Xk(t)|
A7σ∗(A7h/ log log(1/h))

≤ 1 a.s.,

where A7 is the constant in (3.3).

Remark 3.3. If condition (vi) in Theorem 3.2 is weakened by the following
condition:

(vi)′ there exists d > 1 such that

(3.5)

∞
∑

k=1

d−σ−2
k

(θ0) < ∞,

where θ0 > 0 is a constant given as in condition (v), then, (3.4) remains true.

Proof of Theorem 3.2. Let

M(h) = sup
0≤t≤h

max
k≥1

|Xk(t)|.

For 0 < ε < 1, put

sn = exp(−n1+ε), dn = exp(n1+ε + nε), σ(n) = A7σ
∗(A7sn/ log log(1/sn)).

It suffices to show that

(3.6) lim inf
n→∞

M(sn)/σ(n) ≤ 1 a.s..

To prove (3.6), we use the spectral representation of Xk(·), as Shao and Wang
[13] (or, as [11]) did. It is well-known that for each k ≥ 1, E{Xk(s)Xk(t)} has
a unique Fourier representation of the form

(3.7) E{Xk(s)Xk(t)} =

∫

R

(

eisλ − 1
)(

e−itλ − 1
)

∆k(dλ) + Bkst.
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Here Bk is some positive number and ∆k(dλ) is a nonnegative measure on
R − {0} satisfying

∫

R

λ2

1 + λ2
∆k(dλ) < ∞.

Moreover, there exist a centered, complex-valued Gaussian random measure
Wk(dλ) and a Gaussian random variable Vk which is independent of Wk such
that

(3.8) Xk(t) =

∫

R

(

eitλ − 1
)

Wk(dλ) + Vkt.

The measures Wk and ∆k are related by the identity E{Wk(A)Wk(B)} =

∆k(A ∩ B) for all Borel sets A and B in R. Furthermore, Wk(−A) = Wk(A).
It follows from (3.8) that for 0 < h < 1,

(3.9) σ2
k(h) = 2

∫

R

(1 − cos(hλ))∆k(dλ) + h2Bk ≥ 2

∫

R

(1 − cos(hλ))∆k(dλ).

We have

(3.10)

∫

|λ|≥1/h

∆k(dλ) ≤ 1

1 − sin 1

∫

|λ|≥1/h

(

1 − sin(hλ)

hλ

)

∆k(dλ)

=
1

(1 − sin 1)h

∫

|λ|≥1/h

∫ h

0

(1 − cos(uλ))du∆k(dλ)

≤ 1

(1 − sin 1)h

∫ h

0

∫

R

(1 − cos(uλ))∆k(dλ)du

≤ 4σ2
k(h).

Similarly, by (3.9)

(3.11)

∫

|λ|≤1/h

|λ|2∆k(dλ) ≤ 4h−2

∫

|λ|≤1/h

(1 − cos(hλ))∆k(dλ)

≤ 4h−2σ2
k(h).

Define for n = 1, 2, . . . and 0 ≤ t ≤ 1,

X
(n)
k (t) =

∫

|λ|∈(dn−1,dn]

(eitλ − 1)Wk(dλ),

X̃
(n)
k (t) =

∫

|λ|6∈(dn−1,dn]

(eitλ − 1)Wk(dλ).

Clearly,

(3.12) Xk(t) = X
(n)
k (t) + X̃

(n)
k (t) + Vkt.
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By (3.12), we have

(3.13)

lim inf
n→∞

M(sn)

σ(n)

≤ lim inf
n→∞

sup
0≤t≤sn

max
k≥1

|X(n)
k (t)|
σ(n)

+ lim sup
n→∞

sup
0≤t≤sn

max
k≥1

|X̃(n)
k (t)|
σ(n)

+ lim sup
n→∞

sn maxk≥1 |Vk|
σ(n)

=: I1 + I2 + I3.

From condition (iii) it follows that there is 0 < δ < 1 such that

(3.14) σ∗(lh) ≤ 2l1−δσ∗(h)

for every 0 < h < 1 and integers l with 1 ≤ l ≤ 1/h. It follows that

(3.15)
sn

σ(n)
≤ Ksn(log log(1/sn)/sn)1−δ = Ksδ

n(log log(1/sn))1−δ.

For 0 < η < 1 and n ≥ 1, define

E(n, η) :=
{

sup
0≤t≤sn

max
k≥1

|Xk(t)| ≤ (1 + η)σ(n)

}

,

F (n, η) :=
{

sup
0≤t≤sn

max
k≥1

|X(n)
k (t)| ≤ (1 + η)σ(n)

}

,

G(n, η) :=
{

sup
0≤t≤sn

max
k≥1

|X̃(n)
k (t)| ≥ ησ(n)

}

,

H(n, η) :=
{

sn max
k≥1

|Vk| ≥ ησ(n)}.

Clearly,

(3.16) P (F (n, 3η)) ≥ P (E(n, η)) − P (G(n, η)) − P (H(n, η)).

It is easy to see that EV 2
k ≤ σ2

k(θ0) for every k ≥ 1. Then, by (3.15) and the
inequality
(3.17)
( 2

π

)1/2

(1+ t)−1e−t2/2 ≤ P (|N(0, 1)| ≥ t) ≤ 4

3

( 2

π

)1/2

(1+ t)−1e−t2/2, ∀t ≥ 0,

we have

P (H(n, η)) ≤
∞
∑

k=1

exp
{

−
η2σ2

(n)

3s2
nσ2

k(θ0)

}

≤
∞
∑

k=1

exp
{

− Ks−δ
n (log log(1/sn))−(1−δ)σ−2

k (θ0)
}

≤
∞
∑

k=1

exp{−nσ−2
k (θ0)}
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for large n by recalling the definition of sn. From condition (vi), it follows that
(3.5) holds. Hence, by (3.5),
(3.18)

∞
∑

n=1

P (H(n, η)) ≤ n0 +

∞
∑

n=n0+1

∞
∑

k=1

exp{−nσ−2
k (θ0)}

≤ n0 +

∞
∑

n=n0+1

exp{−nσ−2
k (θ0)/2}

∞
∑

k=1

exp{−nσ−2
k (θ0)/2}

≤ n0 +
∞
∑

n=n0+1

exp{−Kn}
∞
∑

k=1

d−σ−2
k

(θ0) < ∞,

where n0 = n0(d) is a finite number such that en0/2 ≥ d. Thus, by the Borel-
Cantelli lemma we get

(3.19) I3 = 0 a.s.

by the arbitrariness of η.
From (3.10), (3.11), and (3.14), we obtain that for 0 ≤ t ≤ sn and each

k ≥ 1,

Var(X̃
(n)
k (t)) = 2

∫

|λ|6∈(dn−1,dn]

(1 − cos(tλ))∆k(dλ)

≤
∫

|λ|≤dn−1

t2|λ|2∆k(dλ) + 4

∫

|λ|≥dn

∆k(dλ)

≤ 4s2
nd2

n−1σ
2
k(sn/(sndn−1)) + 4σ2

k(sn/(sndn))

≤ 4(sndn−1)
2δσ2

k(sn) + 4σ2
k(sn/(sndn))

≤ max{8 exp(−εnε)σ2
k(sn), 8σ2

k(sn/(sndn))}.

Therefore, for every 0 ≤ s, t ≤ sn, |s − t| ≤ h ≤ sn,

Var(X̃
(n)
k (s) − X̃

(n)
k (t)) ≤ σ̃

(n)
k (h)2,

where σ̃
(n)
k (h)2 := min

{

σ2
k(h), max{16 exp(−εnε)σ2

k(sn), 16σ2
k(sn/(sndn))}

}

.

Let

σ∗(n, h) = max
k≥1

σ̃
(n)
k (h).

Since σ∗(h)/hα is quasi-increasing on (0, 1) for some α > 0, we have easily

(3.20) σ∗(n, h) ≤ 4 exp{−εnε/2}σ∗(sn).

Following the same lines of the proof of Lemma 1.1.1 in [3], for any ε > 0,
0 ≤ T ≤ t0, 0 < h ≤ h0, and y ≥ y0, with some t0 > 0, h0 > 0 and y0 > 0,
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there exist K = K(ε) > 0 such that

(3.21)

P
(

sup
0≤t≤T

sup
0≤s≤h

max
k≥1

|Xk(t + s) − Xk(t)| ≥ (1 + ε)yσ∗(h)
)

≤ K
T

h

∞
∑

k=1

e−y2(σ∗(h))2/2σ2
k(h).

From condition (v), (3.5), and (3.21) (with X̃
(n)
k (·) and σ∗(n, h) instead of

Xk(·) and σ∗(h) therein respectively) yield

P (G(n, η)) ≤ K

∞
∑

k=1

exp
{

− (ησ(n))
2

Kn exp(−εnε)σ2
k(sn)

}

≤ K

∞
∑

k=1

exp
{

− K
exp(εnε)

n
× 1

σ2
k(θ0)

}

for every η > 0. Thus, similarly to (3.18), we have
∑

n P (G(n, η)) < ∞, which,
by the Borel-Cantelli lemma and the arbitrariness of η, implies that

(3.22) I2 = 0 a.s..

Since σ∗(·) is non-decreasing, there is 0 < η′ ≤ η such that (1 + η)σ∗(x) ≥
σ∗((1 + η′)x). Then, by (3.3), we have

P (E(n, η)) ≥ exp(−(1 + η′)−1 log log(1/sn)) ≥ n−1

if we choose 0 < ε ≤ η′. It follows that
∑

n P (E(n, η)) = ∞. Therefore, by
(3.16) and combining the above estimates, we arrive at

∑

n

P (F (n, η)) = ∞

for every η > 0. Since F (n, η), n = 1, 2, . . . are independent, by the Borel-
Cantelli lemma, we get

(3.23) I1 ≤ 1 a.s.

since we can take η > 0 arbitrarily small.
Combining (3.13), (3.19), (3.22), and (3.23), we get (3.4) and complete the

proof. �

Proof of Theorem 1.1. From Theorems 2.1(a), 2.2, 3.1, and 3.2, Theorem 1.1
follows immediately. �

4. Applications

In this section we concern applications of Theorem 1.1 to l∞-fractional Brow-
nian motion. For a fixed constant 0 < H < 1, a fractional Brownian motion
with index H is a centered Gaussian process XH = {XH(t), t ≥ 0} with values
in R and covariance function given by

(4.1) E

[

XH(s)XH(t)

]

=
1

2

(

|s|2H + |t|2H − |s − t|2H

)

, ∀s, t ≥ 0.
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When H = 1/2, XH is the real-valued Brownian motion. Fractional Brownian
motion is naturally related to long range dependence which makes it important
for modeling phenomena with self-similar and/or long memory properties, see
Kahane [6] and Samorodnitsky and Taqqu [12] for more historical information,
probabilistic and statistical properties of fractional Brownian motion. For laws
of the iterated logarithm, the increments, as well as the Lévy moduli of con-
tinuity for fractional Brownian motion, we refer to Monrad and Rootzén [11],
Csörgő and Shao [4] and many others (cf. e.g., the references cited therein). In
this section, as an application of Theorem 1.1, we investigate Chung-type law
of the iterated logarithm of l∞-valued fractional Brownian motion.

Theorem 4.1. Let {Xk(t), 0 ≤ t ≤ 1}∞k=1 be a sequence of independent stan-

dard fractional Brownian motion of index H, 0 < H < 1. Let γ > 1 and

ck = k−γ , k ≥ 1. Then, there exists a positive constant A8 such that

1/A8 ≤ lim inf
h→0

sup
0≤s≤h

(log log(1/h))H

hH
max
k≥1

|ckXk(s)| ≤ A8 a.s..

Proof. Let {Y (t), 0 ≤ t ≤ 1} = {ckXk(t), 0 ≤ t ≤ 1}∞k=1. By (4.1) and a direct
calculation, we have that for 0 < H ≤ 1/2, Condition (iv) is satisfied and that
for 1/2 < H < 1, Condition (iv)′ is satisfied (see e.g., Kuelbs et al. [7] for
detailed calculation). We can also verify easily that the Conditions (i)-(iii) and
(v)-(vi) of Theorem 1.1 are satisfied. Hence, from Theorem 1.1 and Remark 1.1,
we get the desired result immediately. �

Acknowledgments. The authors would like to thank the referee for his/her
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paper.
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