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THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I

Sung Sik Woo

Abstract. The purpose of this paper is to identify the group of units
of finite local rings of the types F2[X]/(Xk) and Z4[X]/I, where I is
an ideal. It turns out that they are 2-groups and we give explicit di-
rect sum decomposition into cyclic subgroups of 2-power order and their
generators.

1. Introduction

The purpose of this paper is to find the isomorphism type of the group of
units of a finite local ring of some special types namely the ring of the form
R = Z4[X ]/(Xk + 2Xa, 2Xr). This is not a chain ring unless a = 0 ([1]). An
ideal of such ring is generated by two elements in general ([2]). We needed to
require a to be rather ‘big’ to find the group of units.

It turns out that the group of units of the rings we consider are all 2-groups.
By the classification of abelian groups they can be written as a direct sum of
cyclic subgroups of 2-power order. Therefore we need to find the generators of
each cyclic factor.

In Section 2, we collect some general information on the properties of rings
of the type we will consider. In Section 3, we compute the group of units of
the ring F2[X ]/(Xk) by finding explicit generators of cyclic subgroups which
gives a clue to compute the group of units of a finite local ring of the form
R = Z4[X ]/(Xk + 2Xa, 2Xr).

In Section 4, we compute the group of unit of the ring R = Z4[X ]/(Xk) by
showing that the liftings of the generators of the group of units of F2[X ]/(Xk)
and some extra elements of order 2 form a generating set for the group.

In Section 5, we compute the group of units of the ring of the type Z4[X ] /
(Xk + 2Xa) with a certain restriction on a and in Section 6 we compute the
group of units of the ring R = Z4[X ]/(Xk + 2Xa, 2Xr).
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2. Finite local rings over Z4

In this section we collect the properties of the rings of the type we are going to
deal with. First we show that the rings of the type R = Z4[X ]/(Xk+2Xa, 2Xr)
can be characterized as a Z4-algebra generated by a nilpotent element.

We briefly recall some of the result of [2, 3]. Consider a ring of the form
R = Z4[x] with xm = 0 for some m. Then R is a quotient Z4[X ]/I for some
ideal I of Z4[X ]. If I is an ideal which is contained in (2), the ideal generated
by 2, then it turns out that I is of the form (2Xr).

Now suppose the ideal I not contained in (2). We define an order on the set
Z4 = {0̄, 1̄, 2̄, 3̄} in the usual way

0 < 1 < 2 < 3,

where we omitted the bars as we will do from now on. On the set C =
{(a0, a1, . . . , am−1)|ai ∈ Z4} we define an ordering by endowing the lexico-
graphic order. Let

f(X) =

m−1
∑

i=0

aiX
i, g(X) =

m−1
∑

i=0

biX
i

be polynomials in Z4[X ] with deg(f), deg(g) < m. Then we define

f ≤ g if and only if (a0, a1, . . . , am−1) ≤ (b0, b1, . . . , bm−1).

Let us call the element of the form 2Xr a 2xr form. And let us call the
polynomials of the form

g(X) = Xk + 2Xh1 + 2Xh2 + · · · + 2Xht

with ht < · · · < h1 < k < m an xk2 form.

The following theorem is one of the fundamental result in [2].

Theorem 2.1. Let J be an ideal of Z4[X ]/I which is not contained in (2).
Let g(X) = Xk + 2h(X) ∈ J be the smallest xk2 form in J and 2Xr be the

smallest 2xr form in J . Then J = (g(X), 2Xr), where −∞ ≤ r < l. Here we

let X−∞ = 0.

Thereby we obtain easily the following fact.

Lemma 2.2. Let R be a finite local ring over Z4 generated by a nilpotent

element x ∈ R as Z4-algebra. Then R is of the form R = Z4[X ]/(Xk +
2h(X), 2Xr), where h(X) is of degree < k.

Proof. First we write R = Z4[X ]/I for some ideal I. Then I 6⊂ (2) for otherwise
we have a surjection Z4[X ]/I → Z4[X ]/(2). This is impossible since Z4[X ]/(2)
is infinite. Since X ∈ R is nilpotent say, Xm = 0 we have a surjection φ :
Z4[X ]/(Xm) → R. By Theorem 2.1, Ker(φ) is generated by the form described
above. �

First we will state a simple lemma ([2]).
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Lemma 2.3. For a positive integer n and r (1 ≤ 2n < r) we have

(

2n

r

)

≡

{

0 (mod 4) if r 6= 2n−1,

2 (mod 4) if r = 2n−1.

In particular,

(a + b)2
n

= a2n

+ 2(ab)2
n−1

+ b2n

.

Let U(R) be the group of units of the ring R = Z4[X ]/(Xk+2Xa) with a > 0
and U1(R) be the subgroup of U(R) of the form 1 + Xf(X), f(X) ∈ Z4[X ]
whenever it is well defined. Using Lemma 2.2 it is easy to show that the group
of units of the ring R = Z4[X ]/I in which X is nilpotent is a 2-group.

Lemma 2.4. Let R = Z4[X ]/I, where X is nilpotent. Then the group of units

U(R) and U1(R) are 2 groups.

Proof. Suppose X l = 0 for some l. It suffices to show that a2n

= 1 (a ∈ R∗)
for some n. But a ∈ R∗ is of the form ǫ + Xf(X) for some ǫ = 1, 3 and
f(X) ∈ Z4[X ]. Then ǫ2 = 1 and by the lemma above we have (ǫ+Xf(X))2

n

=

ǫ2
n

+ 2(ǫXf)2
n−1

+ (Xf)2
n

= 1 for suitably chosen 2n bigger than l. �

Theorem 2.5 ([1, XVII.3]). If R is a local commutative ring of characteristic

pn, then R is generated by its units as an algebra over Zpn .

Hence we can say that the group of units of R takes a ‘large’ portion of the
ring. However our results show that the functor from the category of finite local
rings over Z4 to the category of abelian groups which sends R to the group of
units U(R) is not faithful. In fact, we can construct nonisomorphic rings by:

Proposition 2.6. Let R = Z4[X ]/(Xk + 2Xa, 2Xr) with a < r < k. Then

distinct triples (k, a, r) gives rise to nonisomorphic rings.

Proof. Obviously k + r − a ≥ 2. Hence Xk = 2Xa and so Xk+r−a = 2Xr = 0
and we see that the nilpotency of X is k+r−a. On the other hand, the additive
structure of R is isomorphic to Z

r
4 ⊕ Z

k−r
2 . Hence r, k − r and k + r − a are

invariants of R. Therefore distinct triples (k, a, r) gives rise to nonisomorphic
rings. �

Now we will see, by using Theorem 6.5 of Section 6, quite a few of them give
rise to isomorphic group of units.

For the rest of the paper we restrict our attention to the rings of the types
R = F2[X ]/(Xk), R1 = Z4[X ]/(Xk +2Xa) and R2 = Z4[X ]/(Xk +2Xa, 2Xr).
We have surjective ring homomorphisms

Z4[X ]/(Xk + 2Xa) → Z4[X ]/(Xk + 2Xa, 2Xr) → F2[X ]/(Xk),

which induces surjective group homomorphisms on the groups of units since a
unit in Z4[X ]/(Xk + 2Xa, 2Xr) (resp. F2[X ]/(Xk)) can be lifted to the units
of the same expression in Z4[X ]/(Xk + 2Xa) (resp. Z4[X ]/(Xk + 2Xa, 2Xr)).
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3. The group of units of the ring R = F2[X]/(Xk)

In this section we determine the group of units of the ring R = F2[X ]/(Xk).
First we observe that the order of the group of units U(R) of R is 2k−1. By the
classification of finite abelian groups we know that U(R) is a product of cyclic
groups of order a power of 2. To find the isomorphism type of the group we
need to determine the exact order of the cyclic subgroups and their generators.
Throughout this section we let R = F2[X ]/(Xk).

Definition 3.1. For a rational number a let ⌊r⌋2 to be the smallest integer

greater than or equal to log2(a). Hence 2⌊r⌋2 is the smallest power of 2 which
is greater than or equal to a.

If the order o(G) of a group G is 2n, then we will say the 2-logarithmic order

of G is n and we will write lo2(G) = n. For x ∈ G we will write lo2(x) = n
for the 2-logarithmic order of the subgroup is generated by x. To simplify our

notation we will write lo(G) for lo2(G).

First we observe that a unit of R = F2[X ]/(Xk) is of the form 1 + Xf(X).

Lemma 3.2. Let R = F2[X ]/(Xk). Then

(i) o(U(R)) = 2k−1,

(ii) lo(1 + X i) = ⌊k
i
⌋2.

Proof. (i) We already remarked on this.
(ii) Since U(R) is a 2-group we know that the order of 1 + X i is a 2-power.

Let ki = ⌊k
i
⌋2. Then i2ki ≥ k and (1 + X i)2

ki
= 1 + X i2ki

= 1 by Lemma 2.2.

On the other hand, if b is a 2-power less than 2⌊
k
i
⌋
2 , then obviously (1+X i)b =

1 + Xb 6= 1. �

Lemma 3.3. If a subgroup of U(R) contains all {(1+Xn)|n is odd less than k}
then it contains (1 + X i) for each positive integer i smaller than k.

Proof. For each even integer a write a = 2bc with an odd integer c. Then

(1 + Xc)2
b

= 1 + Xa. �

For each odd integer < k we let Gi be the subgroup of U(R) generated by
1 + X i. We will show that U(R) is the direct sum of Gi’s.

Theorem 3.4. Let R = F2[X ]/(Xk). Let Gi be the subgroup generated by

(1 + X i), where i is an odd positive integer < k. Then the group U(R) of units

of the ring R is the direct sum

U(R) = G1 ⊕ G3 ⊕ · · · ⊕ Gm,

where m is the largest odd integer smaller than k. Further, the logarithmic

order of the cyclic subgroup generated by (1 + X i) is ⌊k
i
⌋2.

Proof. First we show that (G1+G3+· · ·+Gi)∩Gi+2 = 1. Suppose (1+X i+2)l ∈

(G1 + G3 + · · · + Gi) with l < 2⌊
k

i+2
⌋
2 . Then since G/(G1 + G3 + · · · + Gi)
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is a 2-group we can assume l (by choosing the smallest such) is a power of 2,
namely, (1 + X i+2)2

r

belongs to (G1 + G3 + · · · + Gi). Hence we can write

(1 + X(i+2)2r

) = (1 + X)a1(1 + X3)a3 · · · (1 + X i)ai

for some 0 ≤ aj < ⌊k
j
⌋2 for each odd j smaller than k. Write aj = 2cjbj, where

bj is odd. Then we can write

(1 + X(i+2)2r

) = (1 + X2c1

)b1(1 + X3·2c3

)b3 · · · (1 + X i·2ci
)bi .

The right hand side must contain more than one factor for otherwise (1 +

X(i+2)2r

) = (1 + X2cj
)bj for some j which is not possible.

Note that 2c1, 3 · 2c3 , . . . , i · 2ci are all distinct. Hence we can choose the
smallest one which we call m. Obviously, m < (i + 2)2r since the right hand
side contains more than one factor. Then the right hand side of the above
equality contains Xm, but there is no such term in (1 + X(i+2)2r

). This con-
tradiction shows that (G1 + G3 + · · · + Gi) ∩ Gi+2 = 1.

Now we prove that U(R) = G1 + G3 + · · · + Gm. Let f(X) = 1 + Xa1 +
Xa2 + · · · + Xaj be a unit with a1 < a2 < · · · < aj < k. We induct on
deg(f). If deg(f) = 1, then our result is obvious. Hence we assume g(X) =
1 + Xa1 + Xa2 + · · · + Xaj−1 ∈ G1 + G3 + · · · + Gm and we proceed to prove
f(X) = 1 + Xa1 + Xa2 + · · · + Xaj ∈ G1 + G3 + · · · + Gm. By Lemma 3.3 we
need to express f as a product of (1+X i)’s with various integers i’s. First note
that g(X)(1 + Xaj ) = f(X) + Xa1+aj + · · · + Xaj−1+aj . Next, if we multiply
(1 +Xa1+aj ) by f(X)+Xa1+aj + · · ·+Xaj−1+aj , then the term Xa1+aj drops
out and we get g(X)(1+Xaj)(1+Xa1+aj ) = f(X)+X2a1+aj +· · · . If we repeat
this, then the lowest degree of nonzero terms in the tail of this expression gets
bigger and bigger. By using the fact that Xk = 0 when we keep multiplying
the elements of the form (1 + X i) we come up with an expression of f(X) as
a product of the form f(X) = g(X)(1 + Xb1)(1 + Xb2) · · · (1 + Xbs). �

Corollary 3.5. Let R = F2[X ]/(Xk). Then the group of units of the ring R is

of order 2k−1 and it is isomorphic to the direct sum of cyclic groups of orders

2⌊k⌋2 , 2⌊
k
3
⌋
2 , . . . , 2⌊

k
l
⌋
2 , where l is the largest odd integer < n.

Corollary 3.6. If l is the largest odd integer < n,

⌊k⌋2 + ⌊
k

3
⌋2 + ⌊

k

5
⌋2 + · · · + ⌊

k

l
⌋2 = k − 1.

Remark. It is interesting that there seems to be no rather easy way to show
this identity directly.

Example 3.7. Let R = F2[X ]/(X10). We have ⌊10⌋2 = 4, ⌊10
3 ⌋2 = 2, ⌊10

5 ⌋2 =

1, ⌊10
7 ⌋2 = 1, ⌊10

9 ⌋2 = 1. Hence the group of units U(R) of R is the direct sum

of cyclic subgroups generated by 1 + X, 1 + X3, 1 + X5, 1 + X7, 1 + X9 whose
respective orders are 24, 22, 2, 2, 2. Therefore

U(R) ∼= Z/24 × Z/22 × Z/2 × Z/2 × Z/2.
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4. The group of units of the ring R = Z4[X]/(Xk)

In this section, we determine the group of units of the ring R = Z4[X ]/(Xk)
with k ≥ 2. For this it suffices to determine the subgroup U1(R) of U(R). Since
U(R) consists of elements of the form u+Xf(X) with u = 1 or u = 3, and U1(R)
of elements of u+Xf(X) with u = 1, it is not hard to see U(R) ∼= U1(R)×〈3〉
and, of course, 〈3〉 is a cyclic group of order 2.

When i is odd < k we let Gi be the subgroup of U1(R) generated by 1+X i.
When i is even with i = b2c we let Gi to be the cyclic subgroup of U1(R)
generated by (1 + Xb2c

)(1 + Xb)−2c

;

Gi =

{

〈1 + X i〉 (if i is odd),

〈(1 + Xb2c

)(1 + Xb)−2c

〉 (for even i = b2c with b odd).

Lemma 4.1. Let R = Z4[X ]/(Xk). Then

(i) if i is odd, lo(1 + X i) = ⌊k
i
⌋2 + 1,

(ii) if i is even, Gi is cyclic of order 2.

Proof. (i) We know that the order of every element of U(R) a power of 2 since

U(R) is a 2-group. Now we have (1 + X i)2
n

= 1 + 2X i2n−1

+ X i2n

= 1 if

2n−1 > k
i
. The smallest such power of 2 is 2⌊

k
i
⌋
2
+1.

(ii) If i = b2c with an odd b, then

(1 + X i)2 =1 + 2Xb2c

+ Xb2c+1

=(1 + Xb)2
c+1

by Lemma 2.2. �

We have a natural ring homomorphism φ : R = Z4[X ]/(Xk) → F2[X ]/(Xk).
The map φ induces group homomorphisms on the groups of units

φ0 : U(Z4[X ]/(Xk)) → U(F2[X ]/(Xk))

and

φ1 : U1(Z4[X ]/(Xk)) → U(F2[X ]/(Xk)).

Let T0 be the kernel of φ0 and T be the kernel of φ1. Then the elements of
T are of the form 1 + 2Xf(X) with deg(f) < k. Let

Ti = {1 + 2(X i + (hdt))} = {1 + 2X if(X)} (i = 1, 2, . . . , k − 1),

where hdt stand for ‘higher degree term’ (terms with degree higher than i).
Then Ti is a subgroup of T such that Ti ⊃ Ti+1. Further

Ti · Tj ⊂ Ti whenever i ≤ j.

Lemma 4.2. Let i be an odd integer. Then Gi∩T ⊆ Ti2ki−1 , where ki = ⌊k
i
⌋2.

Proof. Obviously, Gi ∩ T = 〈(1 + X i)2
ki
〉. But (1 + X i)2

ki
= 1 + 2X i2ki−1

∈
Ti2ki−1 . �
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Lemma 4.3. Let 2n = b2c be an even integer < k. Then (1 + X2n)(1 +
Xb)−2c

∈ Tn but (1 + X2n)(1 + Xb)−2c

/∈ Tn+1.

Proof. Since we know that (1 + X2n)(1 + Xb)−2c

∈ T we write (1 + X2n)(1 +
Xb)−2c

= 1 + 2(Xd + hdt), where hdt stand for “higher degree terms”. Hence

(1 + X2n) = (1 + Xb)2
c

(1 + 2(Xd + hdt))

= 1 + 2Xb2c−1

+ 2(Xd + hdt) + 2X2n(Xd + hdt) + X2n.

Now the middle terms 2X i’s have to vanish. Since the degrees of the 4th term
gets bigger they has to cancel off with the higher degree terms of the third term.

And therefore 2Xb2c−1

has to cancel off with 2Xd. Thus d = b2c−1 = n. �

Lemma 4.4. Let R = Z4[X ]/(Xk). Then the group U1(R) of 1-unit of R is

of order 22(k−1).

Proof. The number of elements of the form 1 + aiX
i, where ai ∈ Z4 and i < k

is 22(k−1). �

Using these lemmas we can write U1(R) as a direct sum of cyclic subgroups.

Theorem 4.5. Let R = Z4[X ]/(Xk). Then the group U1(R) of 1-unit of R is

isomorphic to the direct sum

G1 ⊕ G3 ⊕ · · · ⊕ G2n+1 ⊕ G2 ⊕ G4 ⊕ · · · ⊕ G2m,

where 2n + 1 is the largest odd integer less than k and 2m is the largest even

integer less than k. If i is odd, then the group Gi is cyclic group of order

2⌊
k
i
⌋
2
+1 and if i is even, then Gi is cyclic of order 2.

Proof. First we need to show

(G1 + G3 + · · · + G2l−1) ∩ G2l+1 = (1).

Suppose y ∈ (G1 + G3 + · · · + G2l−1) ∩ G2l+1. Then it is of the form,

(1 + X2l+1)a2l+1 = (1 + X)a1(1 + X3)a3 · · · (1 + X2l−1)a2l−1 .

Reducing the equality modulo 2 we see that both sides are equal to 1 since
U(F2[X ]/(Xk)) = G1 ⊕ G3 ⊕ · · · ⊕ G2n+1 by Theorem 3.4. Therefore ai = 2ki

or where ki = ⌊k
i
⌋2. Now we have

1 + 2X(2l+1)2k2l+1−1

=
∏

i<l

(

1 + 2X(2i−1)2k2i−1−1
)

= 1 +
∑

i<l

2X(2i−1)2k2i−1−1

.

But by Lemma 4.2 no power of X in the above equation are the same. Hence the
equality above is impossible. This proves that (G1+G3+ · · ·+G2l−1)∩G2l+1 =
(1).

Now we need to show that (G1 + G3 + · · · + G2n+1 + G2m + G2m−2 +
· · · + G2l+2) ∩ G2l = (1), where 2n + 1 is the largest odd integer < k and
2m is the largest even integer which is < k. Write 2l = b2c. Suppose y
belongs to the intersection then, since G2l is of order 2, it must be of the form
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(1 + X2l)(1 + Xb)−2c

and it must be an element in (G1 + G3 + · · · + G2n+1 +
G2m + G2m−2 + · · ·+ G2l+2). For each even 2i write 2i = bi2

ci . As before it is
of the form

(1 + X2l)(1 + Xb)−2c

=
∏

j odd

(1 + Xj)aj ·
∏

2i>2l

{

(1 + X2i)(1 + Xbi)−2ci
}

.

Reducing modulo 2 both sides must be equal to 1 by Theorem 3.4. Hence we
have aj = 2kj , where kj = ⌊k

j
⌋2 or 0. Now by Lemma 4.2, (1+Xj)aj ∈ T

j2kj−1

with j2kj−1 > k
2 . On the other hand, for each 2i appearing in the product

∏

2i<2l{(1+X2i)(1+Xbi)−2ci
} we have (1+X2i)(1+Xbi)−2ci

∈ Ti with i > l.

Therefore the righthand side is in Tα with α > l since l < k
2 . But the left hand

side contains the term 2X l. This is a contradiction. Hence we conclude that
the intersection (G1+G3+· · ·+G2n+1+G2m+G2m−2+· · ·+G2l+2)∩G2l = (1).

Finally, we need to check that the group G1 ⊕G3⊕ · · ·⊕G2n+1 ⊕G2⊕G4⊕
· · · ⊕ G2m has the right order. By Lemma 4.4, we need to show that it has
order 22k−2. We see easily that

#{positive odd integers < k} =

{

k
2 if k is even,
k−1

2 if k is odd,

and

#{positive even integers < k} =

{

k−2
2 if k is even,

k−1
2 if k is odd.

By Corollary 3.6, we see that ⌊k⌋2 + ⌊k
3 ⌋2 + ⌊k

5 ⌋2 + · · · + ⌊ k
2n+1⌋2 = k − 1. In

either case, the order of the direct sum of cyclic groups is 22k−2. �

Example 4.6. Consider the ring R = Z4[X ]/(X10). The group U1(R) of
1-units of R is isomorphic to

Z/25 ⊕ Z/23 ⊕ Z/22 ⊕ Z/22 ⊕ Z/22 ⊕ Z/2 ⊕ Z/2 ⊕ Z/2 ⊕ Z/2,

where the first five cyclic groups are generated by the units

1 + X, 1 + X3, 1 + X5, 1 + X7, 1 + X9

and the last four groups are generated by

(1+X2)(1+X)−2, (1+X4)(1+X)−4, (1+X6)(1+X3)−2, (1+X8)(1+X)−8

in this order.

5. The group of units of the ring R = Z4[X]/(Xk + 2Xa)

Now consider the group of units of the ring R = Z4[X ]/(Xk + 2Xa) with
(0 < a < k). As before, we have the natural surjection φ : R → F2[X ]/(Xk)
which induces surjective group homomorphism on the groups of units and the
groups of 1-units. As in the previous section we denote the kernel of φ1 by T
and {Ti} be the filtration of T which was introduced in the previous section.
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For each positive odd integer i, let Gi be the cyclic subgroup of U1(R)
generated by 1 + X i; and for each positive even integer 2i = b2c, let Gi be the
cyclic subgroup of U1(R) generated by (1 + X2i)(1 + Xb)−2c

. Write

Godd =
∑

odd i<k

Gi and Gev =
∑

even i<k

Gi.

Lemma 5.1. Let R = Z4[X ]/(Xk + 2Xa). Then 1 + X2n /∈ Godd.

Proof. Let 2n = b2c with c ≥ 1. Assume the contrary and write

1 + X2n =
∏

iodd

(

1 + X i
)ai

.

Reducing the expression modulo 2 we see that it should of the form

1 + X2n =
(

1 + Xb
)2c ∏

i:odd
i6=b

(

1 + X i
)2ki

,

where ki = ⌊k
i
⌋2. Expanding the right hand side we have

(

1 + 2Xb2c−1

+ Xb2c
)



1 +
∑

i6=b

(2X i2ki−1

+ 2X i2ki−k+a)



 .

To simply the notation, let K = (2k1−1, 3 · 2k3−1, . . . , m2km−1) and 2XK =
∑

i6=b 2X i2ki−1

. Using this notation if we expand the right hand side we have

1 + 2Xb2c−1

+ 2XK + 2X2K−k+a + 2X2n(XK + X2K−k+a) + X2n.

Now 2Xb2c−1

cannot cancel off with a term in 2XK since the sum runs over
i such that i 6= b. Hence either 2Xb2c−1

cancels off with a term in 2X2K−k+a

or does not vanish. (It cannot cancel off with a term in 2X2n(XK + XK−k+a)

since b2c−1 < 2n.) If 2Xb2c−1

cancel off with a term of 2X2K−k+a, then the

number of terms in 2Xb2c−1

+ 2X2K−k+a is less than the number of terms
in 2XK . (Some of the exponents i2ki − k + a may be bigger than k so that

X i2ki−k+a = 0) Hence 2XK+(2Xb2c−1

+2X2K−k+a) 6= 0. Therefore it contains

at least a term of the form 2Xα. If 2Xb2c−1

does not cancel off with a term
of 2XK−k+a, then it contains the term 2Xb2c−1

. In either case, the right hand
side contains a term of the form 2Xα whereas the right hand side does not
contain such term. This is a contradiction. �

Lemma 5.2. Let 2n = b2c be an even integer < k. Then (1 + X2n)(1 +
Xb)−2c

∈ Tn but (1 + X2n)(1 + Xb)−2c

/∈ Tn+1.

Proof. The same proof of Lemma 4.3 works for our case. �
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Lemma 5.3. Let R = Z4[X ]/(Xk + 2Xa) and i be an odd integer less than k.

Then

lo(1 + X i) =

{

ki if k − a = i2ki−1,

ki + 1 otherwise,

where ki = ⌊k
i
⌋2. If a > k

2 , then lo(1+X i) = ⌊k
i
⌋2 +1. Furthermore, there are

at most one odd i satisfying k − a = i2ki−1.

Proof. First suppose 2X i2n−1

+ X i2n

= 0. This happens only when i2n ≥ k
and i2n−1 = k − a. The smallest such one is when n = ki. In this case, if we
let n = ki in the equality

(1 + X i)2
n

= 1 + 2X i2n−1

+ X i2n

.

Then X i2ki
= 2X i2ki−k+a = 2X i2ki−i2ki−1

= 2X i2ki−1

and hence (1 + X i)ki =
1. And obviously no smaller power can make it to be 1.

Now suppose 2X i2n−1

+ X i2n

6= 0. Then we must have 2X i2n−1

= 0 and
X i2n

= 0 for the equality above reduces to 1. Note X2k−a = 2Xk = 0 and
these are the smallest such power. Let n = ki + 1 in the equality above. Then

i2ki+1 ≥ 2k ≥ 2k−a and iki ≥ k. Hence (1+X i)2
ki+1

= 1+2X2ki
+X2ki+1

= 1.
And obviously 2ki+1 is the smallest such power. If a > k

2 , then i2ki−1 = k − a

is impossible since i2ki−1 ≥ k
2 .

For the last part simply note that if i2⌊
k
i
⌋
2
−1 = j2⌊

k
j
⌋
2
−1 with odd integers

i, j, then we must have i = j. �

Lemma 5.4. Let R = Z4[X ]/(Xk + 2Xa). Then the order of the group of

1-unit U1(R) is 22(k−1).

Proof. Similar to the proof of Lemma 4.4. �

Combining these lemmas we can decompose the group of units of R =
Z4[X ]/(Xk + 2Xa) into a direct sum of cyclic groups.

Theorem 5.5. Let R = Z4[X ]/(Xk+2Xa). If a > k
2 , then the group of 1-units

U1(R) of R is isomorphic to the direct sum

G1 ⊕ G3 ⊕ · · · ⊕ G2n+1 ⊕ G2 ⊕ G4 ⊕ · · · ⊕ G2m,

where 2n + 1 is the largest odd integer less than k and 2m is the largest even

integer less than k. If i is odd, then the group Gi is cyclic group of order 2⌊
k
i
⌋
2
+1

generated by 1 + X i and if i is even, then Gi is cyclic of order 2 generated by

(1 + X2n)(1 + Xb)−2c

with 2n = b2c < k.

Proof. First we show

(G1 + G3 + · · · + G2l−1) ∩ G2l+1 = (1).

Suppose y ∈ (G1 + G3 + · · · + G2l−1) ∩ G2l+1. Then it is of the form,

(1 + X2l+1)a2l+1 = (1 + X)a1(1 + X3)a3 · · · (1 + X2l−1)a2l−1 .



THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I 305

If we reduce modulo 2, then both sides are equal to 1 by Theorem 3.4. Therefore
ai = 2ki , where ki = ⌊k

i
⌋2. But lo(1 + X i) = ki + 1 by Lemma 5.3. Hence we

have

(1 + X2l+1)2
k2l+1

=
∏

i<2l+1
i=odd

(1 + X i)2
ki

,

where the product is taken over odd integers i with i < 2l + 1.

1 + 2X(2l+1)2k2l+1−1 + 2X(2l+1)2k2l+1−k+a

=
∏

i<2l+1
i=odd

(1 + 2X i2ki−1

+ 2X i2ki−k+a) = 1 +
∑

i<2l+1
i=odd

(2X i2ki−1

+ 2X i2ki−k+a).

Hence we must have
∑

i≤2l+1

i=odd

(

2X i2ki−1

+ 2X i2ki−k+a
)

= 0.

But the equality above is impossible. This follows from the observation: If
K = {a1, a2, . . . , an} strictly increasing numbers with a’s are of the form i2ki−1,
then 2K − α = {2a1 − α, 2a2 − α, . . . , 2an − α} is also a strictly increasing
numbers. In order that the two sets to be equal ai = 2ai − α, namely ai = α
for all i. We apply this with {ai} to be the exponents {i2ki−1} appearing in the
sum which are all distinct. Hence we see (G1 +G3 + · · ·+G2l−1)∩G2l+1 = (1).

Now we need to show that (G1 + G3 + · · · + G2n+1 + G2m + G2m−2 + · · ·+
G2l+2) ∩ G2l = (1), where 2n + 1 is the largest odd integer < k and 2m is
the largest integer which is < k. Write 2l = b2c. Suppose y belongs to the
intersection then, since G2l is of order 2, it must be of the form (1 + X2l)(1 +
Xb)−2c

and it must be an element in (G1 +G3 + · · ·+G2n+1 +G2m +G2m−2 +
· · · + G2l+2). For each even 2i write 2i = bi2

ci. Then, as before, it is of the
form

(1 + X2l)(1 + Xb)−2c

=
∏

j odd

(1 + Xj)aj ·
∏

2i=bi2ci>2l

{

(1 + X2i)(1 + Xbi)−2ci
}

.

Suppose there is no right hand side product
∏

i even>2l{(1+X i)(1+Xbi)−2ci
}.

Then we have 1+X2l ∈ Godd which contradicts to Lemma 5.1. Hence the right

hand side product is nontrivial. Let (1 + X2i)(1 + Xbi)2
ci

= 2Xbi2
ci−1

+ (hdt)
and let B = {bi2

ci−1}. Then bi2
ci−1 > l. Now by reducing modulo 2, we see

that aj = kj = j2⌊
k
j
⌋
2 . Hence the left hand side product can be written

∏

(1 + X i)ki = 1 + 2
∑

(X i2ki−1

+ X i2ki−k+a).

If we write K = {i2ki−1}, then we can write the sum simply by
∏

(1 + X i)ki = 1 + 2(XK + X2K−k+a).
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Note that i2ki−1 > k
2 and i2ki − k + a ≥ a > k

2 by our assumption on a.

Therefore the whole product is of the form 1+2(XB +(hdt)+XK +X2K−k+a)
and is contained in Tα for some α with α > l. On the other hand, the left hand
side is of the form 1 + 2(X l + (hdt)) ∈ Tl by Lemma 5.2.

This proves that (G1 + G3 + · · · + G2n+1 + G2 + · · · + G2l−2) ∩ G2l = (1),
where 2n + 1 is the largest odd integer < k.

To finish our proof we need to check that the order of the subgroup Godd ⊕
Gev is 22(k−1). However, the same proof of last part of Theorem 4.5 also works
for this case also. �

Question† and Remark. Is Theorem 5.5 true without assuming a > k
2?

Under our assumption on a Theorem 5.5 asserts that the group of 1-unit of the
ring R = Z4[X ]/(Xk + 2Xa) depends only on k.

Example 5.6. Let R = Z4[X ]/(X5 + 2X3). Then o(U1(R)) = 28. Now we
have

lo(1 + X) = 4, lo(1 + X3) = 2,

lo((1 + X2)(1 + X)−2) = 1, lo((1 + X4)(1 + X)−4) = 1.

Hence

U1(R) ∼= G1 ⊕ G3 ⊕ G2 ⊕ G4
∼= Z/24 ⊕ Z/22 ⊕ Z/2 ⊕ Z/2 ⊕ Z/2.

Here we note that (1 + X4)(1 + X)−4 = (1 + X4)(1 + X)12 = (1 + X4)(1 +
2X2 + 3X4) = 1 + 2X2. And (1 + X)8 = 1 + 2X4.

6. The group of units of the ring R = Z4[X]/(Xk + 2Xa, 2Xr)

Let R = Z4[X ]/(Xk + 2Xa, 2Xr), where 0 < a < r < k. We have surjective
ring homomorphisms

Z4[X ]/(Xk + 2Xa)
φ1
−→ Z4[X ]/(Xk + 2Xa, 2Xr)

φ2
−→ F2[X ]/(Xk).

They induces surjective maps on the groups of units and their kernels are

Ker(φ1) = {1 + 2(Xr + hdt)},

Ker(φ2) = {1 + 2(X + hdt)}.

Lemma 6.1. Let R = Z4[X ]/(Xk + 2Xa, 2Xr) with 0 < a < r < k. Then

the number of elements of R is 2k+r and the number of elements of U(R) is

2k+r−1 and the group of 1-units U1(R) has order 2k+r−2.

Proof. The number of elements of S = Z4[X ]/(Xk+2Xa) is 4k. Since the num-
ber of elements of the ideal (2Xr) in S is 2k−r. Hence the number of elements
of R is 4k/2k−r = 4r2k−r. On the other hand, note that R = U(R)∪(1+U(R))
is a disjoint union and they have the same number of elements. Therefore the
number of elements of U(R) is 4r2k−r−1 and o(U1(R)) = 1

2o(U(R)). �

†This question is resolved in [4, 5].
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Lemma 6.2. Let R = Z4[X ]/(Xk + 2Xa, 2Xr) with 0 < a < r < k. Then for

each odd integer i less than k we have

(i) If k ≤ r + a and k − a 6= i2⌊
r
i
⌋
2 , then lo(1 + X i) = ⌊ 2r

i
⌋2.

(ii) If k ≥ r + a, then

lo(1 + X i) =

{

⌊k+r−a
i

⌋2,

⌊k
i
⌋2 if k − a = i2ki−1,

where ki = ⌊k
i
⌋2. There are at most one positive odd integer i less than k

satisfying the condition k − a = i2ki−1.

Proof. Note that Xk+r−a = 2Xr = 0 and these are the least such exponents.

Now we have (1 + X i)2
n

= 1 + 2X i2n−1

+ X i2n

= 1 if i2n−1 ≥ r and i2n ≥
k + r − a. Hence if 2r ≥ k + r − a, i.e., k ≤ r + a, then lo(1 + X i) = ⌊ 2r

i
⌋2.

On the other hand, suppose k ≥ r + a. Consider the case k − a = i2ki−1. If
we let n = ki in the equality

(1 + X i)2
n

= 1 + 2X i2n−1

+ X i2n

,

then X i2ki
= 2X i2ki−k+a = 2X i2ki−i2ki−1

= 2X i2ki−1

and hence (1+X i)ki = 1
and obviously no smaller 2-power can make it to be 1. Hence lo(1+X i) = ⌊k

i
⌋2.

And this is the only case when 2X i2n−1

cancels off with X i2n

for if j is another
odd such that k − a = j2kj−1, then j2kj−1 = i2ki−1 and hence i = j. If

k − a 6= i2ki−1, then there is no chance that 2X i2n−1

cancels off with X i2n

.
Hence the smallest power of 2 that makes (1+X i) to be 1 will be ⌊k+r−a

i
⌋2. �

Let R = Z4[X ]/(Xk + 2Xa, Xr) with 0 < a < r < k. As before we have the
natural surjective map φ2 : R → F2[X ]/(Xk) which induces surjective group
homomorphism on the groups of 1-units. As in the previous section, we denote
the kernel of φ1 by T and Ti be the filtration of T as defined there.

Again as in the previous section, for each odd i less than k, let Gi be the
cyclic subgroup of U1(R) generated by 1 + X i and for even 2i = b2c let Gi be
the cyclic subgroup of U1(R) generated by (1 + X2i)(1 + Xb)−2c

. Write

Godd =
∑

odd i<k

Gi and Gev =
∑

even i<k

Gi.

Lemma 6.3. Let R = Z4[X ]/(Xk + 2Xa, 2Xr). Then 1 + X2n /∈ Godd.

Proof. We slightly modify the proof of Lemma 5.1. Let 2n = b2c, c ≥ 1.
Assume the contrary and write

1 + X2n =
∏

i:odd

(

1 + X i
)ai

.

Reducing the expression modulo 2 we see that it should of the form

1 + X2n = (1 + Xb)2
c

∏

i:odd
i6=b

(

1 + X i
)2ki
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where ki = ⌊k
i
⌋2. Expanding the right hand side we have

(

1 + 2Xb2c−1

+ Xb2c
)



1 +
∑

i6=b

(2X i2ki−1

+ 2X i2ki−k+a)



 .

To simplify the notation let K = (2k1−1, 3 · 2k3−1, . . . , m2km−1) and 2XK =
∑

i6=b 2X i2ki−1

. Using this notation if we expand the right hand side we have

1 + 2Xb2c−1

+ 2XK + 2X2K−k+a + 2X2n(XK + X2K−k+a) + X2n.

If b2c−1 ≥ r, then since K 6= 2K − k + a the above sum contains a nonzero

term of the form 2Xα. Now let b2c−1 < r. As before 2Xb2c−1

cannot cancel
off with a term in 2XK since the sum runs over i such that i 6= b. Hence

either 2Xb2c−1

cancels off with a term in 2X2K−k+a or does not vanish. (It
cannot cancel off with a term in 2X2n(XK + XK−k+a) since b2c−1 < 2n.) If

2Xb2c−1

cancel off with a term of 2X2K−k+a, then the number of terms in

2Xb2c−1

+ 2X2K−k+a is less than the number of terms in 2XK . (Some of the

exponents i2ki − k + a may be bigger than r so that X i2ki−k+a = 0.) Hence

2XK + (2Xb2c−1

+ 2X2K−k+a) 6= 0. Therefore it contains at least a term of

the form 2Xα. If 2Xb2c−1

does not cancel off with a term of 2XK−k+a, then it

contains the term 2Xb2c−1

. In either case the right hand side contains a term
of the form 2Xα whereas the right hand side does not contain such term. This
is a contradiction. �

Lemma 6.4. Let 2n = b2c be an even integer < r. Then (1+X2n)(1+Xb)−2c

∈
Tn but (1 + X2n)(1 + Xb)−2c

/∈ Tn+1.

Proof. The same proof of Lemma 4.3 works for our case. �

Finally we compute the group of units of the ring R = Z4[X ]/(Xk +
2Xa, 2Xr) with a certain restriction on a.

Theorem 6.5. Let R = Z4[X ]/(Xk +2Xa, 2Xr). Suppose k
2 < a < r then the

group U1(R) of 1-units of R is isomorphic to the direct sum

G1 ⊕ G3 ⊕ · · · ⊕ G2n+1 ⊕ G2 ⊕ G4 ⊕ · · · ⊕ G2m,

where 2n + 1 is the largest odd integer less than k and 2m is the largest even

integer less than r. If i is odd < k, then the group Gi is cyclic group of order

2⌊
2r
i
⌋
2 generated by 1+X i and if i is even, then Gi is cyclic of order 2 generated

by (1 + X2n)(1 + Xb)−2c

with 2n = b2c < k.

Proof. First we show

(G1 + G3 + · · · + G2l−1) ∩ G2l+1 = (1).

Suppose y ∈ (G1 + G3 + · · · + G2l−1) ∩ G2l+1. Then it is of the form,

(1 + X2l+1)a2l+1 = (1 + X)a1(1 + X3)a3 · · · (1 + X2l−1)a2l−1 .
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If we reduce modulo 2, then both sides are equal to 1 since F2[X ]/(Xk) =
G1 ⊕ G3 ⊕ · · · ⊕ G2n+1. Therefore ai = 2ki or 0, where ki = ⌊k

i
⌋2. Hence the

equality above is of the form

(1 + X2l+1)2
k2l+1

=
∏

i<2l+1
i=odd

(1 + X i)2
ki

.

In other words,

1 + 2X(2l+1)2k2l+1−1 + 2X(2l+1)2k2l+1−k+a

=
∏

i<2l+1
i=odd

(1 + 2X i2ki−1

+ 2X i2ki−k+a) = 1 +
∑

i<2l+1
i=odd

(2X i2ki−1

+ 2X i2ki−k+a).

Hence we have
∑

i≤2l+1

i=odd

(2X i2ki−1

+ 2X i2ki−k+a) = 0.

But the equality above is impossible. This follow from the observation: If
K = {a1, a2, . . . , an} strictly increasing numbers, then 2K−a = {2a1−a, 2a2−
a, . . . , 2an − a} is also a strictly increasing numbers. In order that the two sets
are the same ai = 2ai − a namely ai = a for all i. We apply this with {ai} to
be the exponents {i2ki−1} appearing in the sum which are all distinct. This
proves that (G1 + G3 + · · · + G2l−1) ∩ G2l+1 = (1).

Now we need to show that (G1 + G3 + · · · + G2n+1 + G2m + G2m−2 +
· · · + G2l+2) ∩ G2l = (1), where 2n + 1 is the largest odd integer < k and
2m is the largest integer which is < r. Write 2l = b2c. Suppose y(6= 1)
belongs to the intersection then, since G2l is of order 2, it must be of the form
(1 + X2l)(1 + Xb)−2c

and it must be an element in (G1 + G3 + · · · + G2n+1 +
G2m + G2m−2 + · · ·+ G2l+2). For each even i write i = bi2

ci . As before it is of
the form

(1+X2l)(1+Xb)−2c

=
∏

j odd

(1+Xj)aj ·
∏

r>2i=bi2ci>2l

{

(1 + X2i)(1 + Xbi)−2ci
}

.

Suppose there is no right hand side product
∏

i even>2l{(1+X i)(1+Xbi)−2ci
}.

Then we have 1 + X2l ∈ Godd which contradicts to Lemma 6.3. Hence the
right hand side product expression is nontrivial. Let (1 + X2i)(1 + Xbi)2

ci
=

2Xbi2
ci−1

+ (hdt) and let B = {bi2
ci−1}. Then bi2

ci−1 > l. Now by reducing

modulo 2, we see that aj = kj = j2⌊
k
j
⌋
2 . Hence

∏

(

1 + X i
)ki

= 1 + 2
∑

(

X2ki−1

+ X2ki−k+a
)

.

If we write K = {i2ki−1}, then we can write the sum simply by
∏

(

1 + X i
)ki

= 1 + 2
(

XK + X2K−k+a
)

.
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Note that i2ki−1 > k
2 and 2ki − k + a ≥ a > k

2 by our assumption on a.

Therefore the whole product is of the form 1+2(XB +(hdt)+XK +X2K−k+a)
and is contained in Tα with α > l. On the other hand, the left hand side is of
the form 1+2(X l +(hdt)) ∈ Tl by Lemma 6.4 which is impossible. This proves
that (G1 + G3 + · · · + G2n+1 + G2 + · · · + G2l−2) ∩ G2l = (1), where 2n + 1 is
the largest odd integer < k.

To finish our proof we need to show that the direct sum of our subgroups
has the right order. In fact we know that

2r−1
∑

odd i≥1

⌊
2r

i
⌋2 = 2r − 1.

If i is odd ≥ k, then ⌊ 2r
i
⌋2 = 1. Since the numbers of such i’s are

{

2r−k−1
2 if k is odd,

2r−k
2 if k is even.

Hence
∑

i odd

lo(Gi) =

{

(2r − 1) − 2r−k+1
2 if k is odd,

(2r − 1) − 2r−k
2 if k is even.

On the other hand,

∑

i even

lo(Gi) = #(even < k) =

{

k−1
2 if k is odd,

k−2
2 if k is even.

Therefore lo(Godd)+lo(Gev) = k+r−2 which is exactly the order of U1(R). �

Example 6.6. Let R = Z4[X ]/(X5 + 2X3, 2X4). Then the order of U1(R) is
27 and

U1(R) ∼= G1 ⊕ G3 ⊕ G2 ⊕ G4,

where G1 = 〈1+X〉 with order 23 and G3 = 〈1+X3〉 having order 22; G2, G4 are
cyclic groups of order 2 generated by (1+X2)(1+X)−2 and (1+X4)(1+X)−4

respectively. Therefore,

U1(R) ∼= Z/23 ⊕ Z/22 ⊕ Z/2 ⊕ Z/2.

Acknowledgement. In the sequel of this paper [4, 5] we will remove the
restrictions imposed in the paper by modifying the set of generators.
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