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ORTHOGONAL MULTI-WAVELETS FROM MATRIX

FACTORIZATION

Hongying Xiao

Abstract. Accuracy of the scaling function is very crucial in wavelet
theory, or correspondingly, in the study of wavelet filter banks. We are
mainly interested in vector-valued filter banks having matrix factorization
and indicate how to choose block central symmetric matrices to construct
multi-wavelets with suitable accuracy.

1. Introduction

We consider the case of compactly supported multi-wavelets. That is, sup-
pose Φ = (φ1, . . . , φr)

T are scaling functions, and Ψ = (ψ1, . . . , ψr)
T are the

corresponding wavelet functions, so that the following two-scale equations hold
for all x ∈ R:

Φ(x) =

M∑

n=0

Sn Φ(2 x− n),(1.1)

Ψ(x) =

M∑

n=0

Tn Φ(2 x− n).(1.2)

Define the corresponding symbol functions as

m0(x) :=
1

2

∑

n∈Z

Sn x
n, m1(x) :=

1

2

∑

n∈Z

Tn x
n.

As is well known, the orthonormality of the multi-wavelets implies the fol-
lowing PR condition

(1.3) H(x)HT (1/x) = I2,

with

(1.4) H(x) :=

(
m0(x) m0(−x)

m1(x) m1(−x)

)

.
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Up to now, it seems very difficult to find all solutions of the matrix equation
(1.3) so people hope to construct some special solutions. A class of PR wavelet
filter banks was given in [2] for the general case. In particular, one solution for
the multi-wavelets case is as follows:

(1.5) mk(x) =
1

2
(Ir , xIr)





N∏

j=1

Uj diag
(
Ir, x

2Ir
)
UT

j



 Vk, k = 0, 1.

Here N is a fixed positive integer, Uj is any arbitrary 2r × 2r real orthogonal
matrix, and

(1.6) V := (V0, V1) =

(
Ir Ir

Ir −Ir

)

.

The following theorem could be found in [2].

Theorem 1.1. Suppose filter banks are constructed as in (1.5)-(1.6). Then the

PR condition (1.3) is satisfied.

It is well known that the linear phase of filter banks corresponds to symmetry
of the related functions. It was also pointed out in [2] that to ensure the
uniform linear phase, i.e., to ensure that there exists a natural number s such
that mk(x) = xs mk(1/x), k = 0, 1, we should choose Uj to be r-block central
symmetric matrices:

(1.7) Uj = S

(
Pj 0

0 Qj

)

ST , S =

(
Ir −Jr

Jr Ir

)

,

where Pj , Qj are r-th real orthogonal matrices and Jr is the r-th reversal ma-
trix.

For later convenience, let G(x) = 1
2 (Ir, xIr)

∏N

j=1 Uj diag
(
Ir , x

2Ir
)
UT

j .

2. Accuracy conditions of multiple scaling functions

In the following sections, we concentrate on sufficient and necessary con-
ditions so that the scaling functions have accuracy of order p. That is, all
polynomials with total degree at most p − 1 can be reproduced from linear
combinations of the multi-integer translates of function Φ.

Gilbert Strang stated in [5] that to ensure accuracy, one must check the
value of function m0 and its derivatives at all aliasing frequencies which seems
difficult to compute. By only imposing some conditions on the functionsm0,m1

at x = 1, the author of this paper produced the following theorem, [9].

Theorem 2.1. If Φ = (φ1, φ2, . . . , φr)
T are scaling functions, and the integer

translates of φ1, . . . , φr are linearly independent, moreover, if the corresponding

filter bank satisfies the PR condition (1.3), then Φ have accuracy p if and only
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if there are p vectors ν0, . . . , νp−1, each νl being r × 1 vector and ν0 6= 0, such

that for all j ∈ Zp = {0, 1, . . . , p− 1} :

(2.1)

j
∑

l=0

(
j

l

)

(2i)l−j m
(j−l)
0 (1) νl = 2jνj ,

(2.2)

j
∑

l=0

(
j

l

)

(2i)l−j m
(j−l)
1 (1) νl = 0.

By using this theorem, the next proposition is obtained for the filter banks
constructed as above.

Proposition 2.2. If Φ = (φ1, φ2, . . . , φr)
T are scaling functions with the inte-

ger translates of φ1, . . . , φr being linearly independent, and, the corresponding

filter banks are constructed as in (1.5)-(1.6), then Φ have accuracy p if and only

if there are p vectors ν0, . . . , νp−1, each νl being r × 1 vector and ν0 6= 0, such

that for all j ∈ Zp :

(2.3)

j
∑

l=0

(
j

l

)

(2i)l−j G(j−l)(1)V0 νl = 2jνj ,

(2.4)

j
∑

l=0

(
j

l

)

(2i)l−j G(j−l)(1)V1 νl = 0.

By this proposition, we must find p vectors ν0, . . . , νp−1 to meet the require-
ments of equations (2.3) and (2.4). The procedure is simplified as follows so
that one must only find a nonzero vector ν0 which is the common eigen-vector
corresponding to eigenvalue λ = 0 of several matrices.

Theorem 2.3. Under the assumptions of Proposition 2.2, the scaling functions

have accuracy p if and only if there exist a r× 1 vector ν0 6= 0 such that ν0 are

common eigenvector corresponding to eigenvalue 0 of matrices B1, . . . , Bp−1,
that is,

(2.5) Bn ν0 = 0, n = 1, 2, . . . , p− 1.

The matrices Bj are constructed iteratively as






B1 = N1,

Bn = Nn +
n−1∑

j=1

(
n

j

)

2j − 1
Nn−jAj , 2 ≤ n ≤ p− 1

(2.6)

and






A1 = M1,

An = Mn +
n−1∑

j=1

(
n

j

)

2j − 1
Mn−jAj , 2 ≤ n ≤ p− 1

(2.7)
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with

(2.8) Mj := G(j)(1)V0, Nj := G(j)(1)V1.

Furthermore, the solutions of equations (2.3), (2.4) are given as

(2.9) νn =
(2i)−n

2n − 1
An ν0, n = 1, 2, . . . , p− 1.

Proof. If the assumptions of Proposition 2.2 are satisfied, one easily checks that

(2.10) G(1)V0 = Ir, G(1)V1 = 0r,

so that for any r × 1 vector ν0 6= 0, equations (2.3) and (2.4) for p = 1. Thus,
the corresponding scaling functions have at least accuracy of p = 1.

From Proposition 2.2, Φ have accuracy p = 2 if and only if there exists r×1
vector ν0, ν1 with ν0 6= 0 such that
(2.11)
G(1)V0 ν0 = ν0, G(1)V1 ν0 = 0,

(2i)−1G(1)(1)V0 ν0 +G(1)V0ν1 = 2ν1, (2i)−1G(1)(1)V1 ν0 +G(1)V1ν1 = 0.

By using the relations (2.10) and the notations in (2.6)-(2.8), the last equations
are equivalent to

B1 ν0 = 0, ν1 = (2i)−1A1 ν0,

this is just what equations (2.5) and (2.9) states for p = 2.

Suppose this theorem holds for some p ≥ 2, next we will prove by induction
that it also holds for p+ 1. Proposition 2.2 states that Φ have accuracy p+ 1
if and only if there exists r × 1 vector ν0, . . . , νp+1 with ν0 6= 0 such that (2.3)
and (2.4) holds for all j = 0, 1, . . . , p. By induction, this is equivalent to

Bn ν0 = 0, νn =
(2i)−n

2n − 1
An ν0, n = 1, 2, . . . , p− 1;(2.12)

p
∑

l=0

(
p

l

)

(2i)l−pG(p−l)(1) V0 νl = 2pνp;(2.13)

p
∑

l=0

(
p

l

)

(2i)l−pG(p−l)(1) V1 νl = 0.(2.14)

By using (2.10) and (2.12), the left side of equation (2.14) equals to
p
∑

l=1

(
p

l

)

(2i)l−pNp−l νl + (2i)−pNpν0

=

p
∑

l=1

(
p

l

)

(2i)l−pNp−l

(2i)−l

2l − 1
Al ν0 + (2i)−pNpν0

= (2i)−p

{
p
∑

l=1

(
p
l

)

2l − 1
Np−lAl +Np

}

ν0 = (2i)−pBp ν0.
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Similarly, by using (2.10) and (2.12), the left side of equations (2.13) equals to

p
∑

l=1

(
p

l

)

(2i)l−p Mp−l νl + (2i)−pMpν0 + νp

=

p
∑

l=1

(
p

l

)

(2i)l−p Mp−l

(2i)−l

2l − 1
Al ν0 + (2i)−pMpν0 + νp

= (2i)−p

{
p
∑

l=1

(
p
l

)

2l − 1
Mp−lAl +Mp

}

ν0 + νp = (2i)−pAp ν0 + νp.

Thus, equations (2.12)-(2.14) are equivalent to

Bn ν0 = 0, νn =
(2i)−n

2n − 1
An ν0, n = 1, 2, . . . , p.

So we have proved this theorem. �

3. Computation of the derivatives G
(j)(1)

Theorem 2.3 propose a sufficient and necessary condition for the correspond-
ing scaling functions to have accuracy of degree p. Note that this implies the
necessity of computing the derivatives of G(x), that is, the derivatives of the
product of several functions. Next, we give the following results concerning the
computation of derivatives.

3.1. Derivation of products of functions

The first lemma is classical in mathematical analysis which is called Leibniz’s
formula.

Lemma 3.1. Let f(x) = f1(x) f2(x). Then, for any natural number n, the

n-th derivative of function f is

(3.1) f (n)(x) =

n∑

m=0

(
n

m

)

f
(m)
1 (x) f

(n−m)
2 (x).

Lemma 3.2. Let f(x) = f1(x) · · · fM (x). Then, for any natural number n,
the n-th derivative of f is

(3.2) (f1 · · · fM )
(n)

(x) =
∑

j1+···+jM=n
ji≥0

n!

j1 ! j2 ! · · · jM !
f

(j1)
1 (x) · · · f

(jM )
M (x).

Proof. We will prove this theorem by induction of M . For M = 1, this theorem
holds naturally. And, Lemma 3.1 states that (3.2) holds for M = 2.
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Suppose this theorem holds for some natural number M ≥ 2, then, by
Lemma 3.1,

(f1 · · · fM+1)
(n)(x)

=

n∑

m=0

(
n

m

)

(f1 · · · fM )
(m)

(x) f
(n−m)
M+1 (x)

=
n∑

m=0

(
n

m

)
∑

j1+···+jM =m
ji≥0

m!

j1 ! j2 ! · · · jM !
f

(j1)
1 (x) · · · f

(jM )
M (x) f

(n−m)
M+1 (x)

=
∑

j1+···+jM+1=n
ji≥0

(n+ 1)!

j1 ! j2 ! · · · jM+1 !
f

(j1)
1 (x) · · · f

(jM+1)
M+1 (x).

Thus, this theorem also holds for M + 1. �

3.2. Computation of the derivatives G
(j)(1)

In this section we will concentrate on the filter banks which are constructed
in (1.5)-(1.7). Let f0 = 1

2 (Ir, xIr) , and for j = 1, . . . , N ,

fj(x) = Uj diag
(
Ir, x

2Ir
)
UT

j .

Then their derivatives are
(3.3)

f
(k)
0 (1) =







1
2 (Ir, Ir) , k = 0,

1
2 (0r, Ir) , k = 1,

0r×2 r, k ≥ 2,

f
(k)
j (1) =







I2 r, k = 0,

2Uj diag (0r, Ir) U
T
j , k = 1, 2,

02 r, k ≥ 3.

Or equivalently,

f
(k)
0 (1) =

1

2
(δk Ir, (δk + δk−1)Ir) ,(3.4)

f
(k)
j (1) = Uj diag (δk Ir , (δk + 2δk−1 + 2δk−2)Ir) U

T
j .(3.5)

Thus, by Lemma 3.2, the derivative of G at x = 1 is given as in the next
theorem.

Theorem 3.3. The derivatives of G(x) is given as

G(k)(1)

=
1

2
(Ir, Ir)

∑

k1+···+kN =k,
0≤ki≤2

k!

k1 ! · · · kM !

N∏

j=1

Uj diag
(
δkj

0r, (δkj
+ 2δkj−1 + 2δkj−2)Ir

)
UT

j

+
1

2
(0r, Ir)

∑

k1+···+kN=k−1,
0≤ki≤2

(k − 1)!

k1 ! · · ·kM !

N∏

j=1

Uj diag
(
δkj

0r, (δkj
+ 2δkj−1 + 2δkj−2)Ir

)
UT

j .
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Proof. By using Lemma 3.2 and relation (3.3), we have

G(k)(1) =
1

2
(Ir, Ir)

∑

k1+···+kN=k
0≤ki≤2

k!

k1 ! · · · kM !
f

(k1)
1 (1) · · · f

(kN )
N (1)

+
1

2
(0r, Ir)

∑

k1+···+kN =k−1
0≤ki≤2

(k − 1)!

k1 ! · · ·kM !
f

(k1)
1 (1) · · · f

(kN )
N (1).(3.6)

This combined with relations (3.4)-(3.5) concludes the proof of this theorem.
�

Although this theorem gives a close form of the derivative G(j)(1), it is not
very convenient for computational purpose. It is implied from relations (3.3)
and (3.6) that to compute G(k)(1), we should consider matrix multiplication of

the following form
∏M

q=1 Ujq
diag (0r, Ir) Ujq

T where each Ujq
is characterized

as in (1.7).

Proposition 3.4. Let Uj be characterized as in (1.7). Then for any 2 ≤M ≤
N, we have

(3.7)

M∏

j=1

Uj

(
0r

Ir

)
UT

j = U1






0r 0r

0r

M−1∏

j=1

(QT
j Qj+1 + Jr P

T
j Pj+1 Jr)




 UT

M .

Proof. We will prove this proposition by induction of M .
(1) For M = 2, by using the fact that

(3.8) Uj

(
0r

Ir

)
UT

j = S
(

Pj

Qj

)

ST
(

0r

Ir

)
S

(
P T

j

QT
j

)

ST ,

we have

U1

(
0r

Ir

)
UT

1 U2

(
0r

Ir

)
UT

2

= S
(

P1

Q1

)

ST
(

0r

Ir

)
S
(

P T
1 P2

QT
1 Q2

)

ST
(

0r

Ir

)
S
(

P T
2

QT
2

)

ST .

Note that for any r × r matrices A,B,C,D, the following identities hold:
(

0r

Ir

) (
A B
C D

) (
0r

Ir

)

=

(
0r 0r

0r D

)

,(3.9)

S

(
PT

1 P2

QT
1 Q2

)

ST =

(
∗ ∗
∗ QT

1 Q2 + Jr P
T
1 P2Jr

)

.(3.10)

Thus, we have

U1

(
0r

Ir

)
UT

1 U2

(
0r

Ir

)
UT

2 = U1

(
0r 0r

0r QT
1 Q2+Jr P T

1 P2 Jr

)

UT
2 .

That is, we have proved the relation (3.7) for M = 2.
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(2) Suppose relation (3.7) holds for some M ≥ 2, then, by induction,

(3.11)

M+1∏

j=1

Uj

(
0r

Ir

)
UT

j

= U1

(
0r 0r

0r

QM−1

j=1
(QT

j Qj+1+Jr P T
j Pj+1 Jr)

)

UT
M UM+1

(
0r

Ir

)
UT

M+1.

Note that for any r × r matrices A,B,C,D, F the following identities hold:
(

0r 0r

0r F

) (
A B
C D

) (
0r

Ir

)

=

(
0r 0r

0r F D

)

,

UT
M UM+1 = S

(
PT

M PM+1

QT
M QM+1

)

ST

=

(
∗ ∗
∗ QT

M QM+1 + Jr P
T
M PM+1Jr

)

.

Consequently,

M+1∏

j=1

Uj

(
0r

Ir

)
UT

j = U1






0r 0r

0r

M∏

j=1

(QT
j Qj+1 + Jr P

T
j Pj+1 Jr)




 UT

M+1.

That is, we have proved that this proposition holds for M + 1. �

Another question concerning the formula (3.6) is as follows: how to charac-
terize the set {(j1, . . . , jN ) : j1 + · · · + jN = k, ji ∈ {0, 1, 2}}. In fact we only
have to consider the following simpler sets
(3.12)
SN,k := {(j1, . . . , jN ) : j1 ≥ j2 ≥ · · · ≥ jN , j1 + · · · + jN = k, ji ∈ {0, 1, 2}} .

Proposition 3.5. Given a natural number N, suppose SN,k are defined in

(3.12) for all nonnegative integers k. Then, we have

(3.13)

SN,k =







{(0, 0, . . . , 0)} , k = 0,

{(1, 0, . . . , 0)} , k = 1,

{(
︷ ︸︸ ︷

1, . . . , 1
k

, 0, . . . , 0)} ∪ S̃N,k−2, 2 ≤ k ≤ N,

{(2 − jN , . . . , 2 − j1) : (j1, . . . , jN ) ∈ SN,2N−k} , N + 1 ≤ k ≤ 2N,

∅, k ≥ 2N + 1,

with S̃N,k := {(2, j1, . . . , jN−1) : (j1, . . . , jN ) ∈ SN,k}. Moreover, the cardinali-

ties are

#(SN,k) =







[k
2 ] + 1 0 ≤ k ≤ N,

N − [k−1
2 ] N + 1 ≤ k ≤ 2N,

0 k ≥ 2N + 1.

(3.14)
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Proof. To verify the equalities (3.13), we only have to prove that the third

equality holds for all 2 ≤ k ≤ N, that is, SN,k = {(
︷ ︸︸ ︷

1, . . . , 1
k

, 0, . . . , 0)} ∪

S̃N,k−2. On the one hand, for any (j1, . . . , jN ) ∈ SN,k, we have either j1 = 2
or j1 = 1. If j1 = 2, then it is easy to verify that (j2, . . . , jN , 0) ∈ SN,k−2,

thus, (j1, . . . , jN ) ∈ S̃N,k−2; in the case that j1 = 1, we have (j1, . . . , jN ) =

(
︷ ︸︸ ︷

1, . . . , 1
k

, 0, . . . , 0). So we have prove that

SN,k ⊆

{

(
︷ ︸︸ ︷

1, . . . , 1
k

, 0, . . . , 0)

}
⋃

S̃N,k−2.

On the other hand, firstly we know that (
︷ ︸︸ ︷

1, . . . , 1
k

, 0, . . . , 0) ∈ SN,k. For any

(2, j1, . . . , jN−1) ∈ S̃N,k−2 where (j1, . . . , jN ) ∈ SN,k−2, one can check easily
that jN = 0. Otherwise, if jN ≥ 1, then it is implied that j1 + · · · + jN ≥
N > k − 2. Thus, we have (2, j1, . . . , jN−1) ∈ SN,k. Consequently, we have

proved that SN,k ⊇ {(
︷ ︸︸ ︷

1, . . . , 1
k

, 0, . . . , 0)} ∪ S̃N,k−2. Combining the two result,
the proof of (3.13) is finished. The equality (3.14) can be easily checked by
using the results of (3.13). �

Proposition 3.5 produces a recursive method to construct the sets SN,k. In
what follows we will show exactly what SN,k are.

Proposition 3.6. Let the sets SN,k be defined as in (3.12). Then for any

0 ≤ k ≤ N, we have

SN,k =

[ k
2
]

⋃

j=0






(

j
︷ ︸︸ ︷

2, . . . , 2,

k−2j
︷ ︸︸ ︷

1, . . . , 1,

N−k+j
︷ ︸︸ ︷

0, . . . , 0)






.(3.15)

And, for those N + 1 ≤ k ≤ 2N, we have

SN,k =

[N−k
2
]

⋃

j=0






(

k+j−N
︷ ︸︸ ︷

2, . . . , 2,

2N−k−2j
︷ ︸︸ ︷

1, . . . , 1 ,

j
︷ ︸︸ ︷

0, . . . , 0)






.(3.16)

Proof. One can easily checks that equality (3.16) is implied by (3.13) and (3.15).
We will prove by induction of k that equality (3.15) holds for all 0 ≤ k ≤ N.
Firstly, it is easy to verify that this holds for k = 0, 1. Furthermore, the fact
that SN,2 = {(2, 0, 0, . . . , 0), (1, 1, 0, . . . , 0)} implies that this equality also holds
for k = 2.

Suppose there are some 2 ≤ k ≤ N − 1, such that equality (3.15) holds for
all 0 ≤ n ≤ k. By (3.13), we have

SN,k+1 = {(
︷ ︸︸ ︷

1, . . . , 1
k+1

, 0, . . . , 0)} ∪ S̃N,k−1,(3.17)

with S̃N,k−1 = {(2, j1, . . . , jN−1) : (j1, . . . , jN ) ∈ SN,k−1} .
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As was pointed in the proof of the last proposition, for any (j1, . . . , jN ) ∈
SN,k−1, we have jN = 0. Thus, by induction,

S̃N,k−1 =

[ k−1

2
]

⋃

j=0






(

j+1
︷ ︸︸ ︷

2, . . . , 2,

k−1−2j
︷ ︸︸ ︷

1, . . . , 1,

N−k+j
︷ ︸︸ ︷

0, . . . , 0)






,

so that

SN,k+1 =

{

(
︷ ︸︸ ︷

1, . . . , 1
k+1

, 0, . . . , 0)

}

∪

[ k−1

2
]

⋃

j=0






(

j+1
︷ ︸︸ ︷

2, . . . , 2,

k−1−2j
︷ ︸︸ ︷

1, . . . , 1,

N−k+j
︷ ︸︸ ︷

0, . . . , 0)






,

=

[ k+1

2
]

⋃

j=0






(

j
︷ ︸︸ ︷

2, . . . , 2,

k+1−2j
︷ ︸︸ ︷

1, . . . , 1,

N−k−1+j
︷ ︸︸ ︷

0, . . . , 0 )






.(3.18)

Note that to prove the equality (3.18), we have used the equality [k+1
2 ] − 1 =

[k−1
2 ]. �

Combining the results in relation (3.6), and Propositions 3.4, 3.6, we propose
the following theorem which seems more convenient to compute G(j)(1).

Theorem 3.7. For 0 ≤ k ≤ N, we have
∑

k1+···+kN =k
0≤ki≤2

k!

k1 ! · · ·kM !
f

(k1)
1 (1) · · · f

(kN )
N (1)

=
[ k
2
]

∑

j=0

(
k − j

j

)
∑

(1≤p1<···<pk−j≤N)

2k−2j k !Up1






0r 0r

0r

k−j−1
∏

l=1

(QT
pl
Qpl+1

+ J PT
pl
Ppl+1

J)




 UT

pk−j
.

And, for N + 1 ≤ k ≤ 2N, we have
∑

k1+···+kN=k
0≤ki≤2

k!

k1 ! · · · kM !
f

(k1)
1 (1) · · · f

(kN )
N (1)

=
[N−k

2
]

∑

j=0

(
N − j

k + j −N

)
∑

(1≤p1<···<pN−j≤N)

k !

2k+j−N
Up1






0r 0r

0r

N−j−1
∏

l=1

(QT
pl
Qpl+1 + J PT

pl
Ppl+1 J)




 UT

pN−j
.

Proof. For any n-tuples (a1, . . . , an), denotes by P (a1, . . . , an) the set of per-
mutations of a1, . . . , an. First consider the case 0 ≤ k ≤ N, we have

∑

k1+···+kN=k
0≤ki≤2

k!

k1 ! · · · kM !
f

(k1)
1 (1) · · · f

(kN )
N (1)

=
∑

(j1,...,jN )∈SN,k

∑

(k1,...,kN )∈P (j1,...,jN )

k!

k1 ! · · · kM !
f

(k1)
1 (1) · · · f

(kN )
N (1)
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=
∑

(j1,...,jN )∈SN,k

∑

(k1,...,kN )∈P (j1,...,jN )

k!

j1 ! · · · jM !
f

(k1)
1 (1) · · · f

(kN )
N (1)

=

[ k
2
]

∑

j=0

[
∑

(k1,...,kN )∈P (ej,k)

k!

2j
f

(k1)
1 (1) · · · f

(kN )
N (1)]

where the N -tuples ej,k are defined as ej,k := (

j
︷ ︸︸ ︷

2, . . . , 2,

k−2j
︷ ︸︸ ︷

1, . . . , 1,
︷ ︸︸ ︷

0, . . . , 0), note
that the last equality holds due to Proposition 3.6. Next, we will show clearly
what the summation in the bracket is. For any given j = 0, 1, . . . , [k

2 ], let

C1 :=
∑

(k1,...,kN )∈P (ej,k)

k!

2j
f

(k1)
1 (1) · · · f

(kN )
N (1),

C2 :=
∑

(q1,...,qk−j)∈p(ẽj,k)

∑

1≤p1<···<pk−j≤N

k!

2j
f (q1)

p1
(1) · · · f

(qk−j)
pk−j

(1),

where ẽj,k := (

j
︷ ︸︸ ︷

2, . . . , 2,

k−2j
︷ ︸︸ ︷

1, . . . , 1), we claim that C1 = C2. On the one hand,
it is straightforward to prove that the terms of summations are equal since
(
N

j

)(
N−j

k−2j

)
=
(
k−j

j

)(
N

k−j

)
. On the other hand, we will verify that any summation

term of C1 emerges also in C2. For fixed permutation of ej,k, it is implied

from relation (3.3) that only k− j terms in the product k!
2j f

(k1)
1 (1) · · · f

(kN )
N (1)

counts. Thus, there exists 1 ≤ p1 < · · · < pk−j ≤ N, and q1, . . . , qk−j being

permutation of ẽj,k so that k!
2j f

(k1)
1 (1) · · · f

(kN )
N (1) =

k!

2j
f

(q1)
p1

(1) · · · f
(qk−j)
pk−j

(1).

This concludes the proof of identity C1 = C2. So we have
∑

k1+···+kN =k
0≤ki≤2

k!

k1 ! · · ·kM !
f

(k1)
1 (1) · · · f

(kN )
N (1)

=

[ k
2
]

∑

j=0

[
∑

(q1,...,qk−j)∈P (ẽj,k)

∑

1≤p1<···<pk−j≤N

k!

2j
f (q1)

p1
(1) · · · f

(qk−j)
pk−j

(1)]

=

[ k
2
]

∑

j=0

(
k − j

j

)
∑

(1≤p1<p2<···<pk−j≤N)

k !

2j
f (q1)

p1
(1) · · · f

(qk−j)
pk−j

(1)

=

[ k
2
]

∑

j=0

(
k − j

j

)
∑

(1≤p1<p2<···<pk−j≤N)

2k−2j k !Up1






0r 0r

0r

k−j−1
∏

l=1

(QT
pl
Q1+pl

+ J PT
pl
P1+pl

J)




 UT

pk−j
.
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It should be noted that we have used Proposition 3.4 and the following facts:

(1) for any j = 1, . . . , N , f
(1)
j (1) = f

(2)
j (1) = 2Uj

(
0r

Ir

)
UT

j ;

(2) the number of permutations of (

m
︷ ︸︸ ︷

2, . . . , 2,

n
︷ ︸︸ ︷

1, . . . , 1) is
(
m+n

m

)
.

By the same trick we can prove the theorem for the caseN+1 ≤ k ≤ 2N. �

4. Numerical examples

Consider the case r = 2. Assume that filter banks are constructed as in
(1.5)-(1.7) where the 2 × 2 real orthogonal matrices Pj , Qj are

(4.19) Pj =

(
cosαj sinαj

− sinαj cosαj

)

, Qj =

(
cosβj sinβj

− sinβj cosβj

)

.

Let γj = αj + βj , then the matrices B1, B2 defined in Theorem 2.3 are

B1 = −λ3 I2, B2 =

(
λ2 0
0 λ3

)

,

with parameters

λ1 =
1

2
+

N∑

j=1

cos γj ,

λ2 = −N +
N∑

j=1

sin γj − (N + 1)
N∑

j=1

cos γj +
∑

1≤k<j≤N

sin (γj − γk),

λ3 = −N −

N∑

j=1

sin γj − (N + 1)

N∑

j=1

cos γj −
∑

1≤k<j≤N

sin (γj − γk).

Thus, by Theorem 2.3, we have the following sufficient and necessary conditions
for the corresponding scaling functions to have accuracy p = 2, 3.

Theorem 4.1. When r = 2, and wavelet filter banks are constructed as in

(1.5)-(1.7) and (4.19), then the corresponding scaling functions have at least

accuracy of order p = 2 if and only if

(4.20)

N∑

j=1

cos γj = −
1

2
.

Moreover, the corresponding scaling functions have at least accuracy of order

p = 3 if and only if in addition to (4.20), the following equality holds:

(4.21)
N∑

j=1

sin γj +
∑

1≤k<j≤N

sin (γj − γk) = ±
1

2
.
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Proof. By Theorem 2.3, the scaling functions have at least second accuracy if
and only if there exists nonzero 2 × 1 vector ν0 such that B1 ν0 = −λ1 ν0 = 0,
this reduces to λ1 = 0.

Similarly, the scaling functions have at least third accuracy if and only if
there exists nonzero 2 × 1 vector ν0 such that B1 ν0 = −λ1 ν0 = 0, B2 ν0 =
(

λ2 0
0 λ3

)
ν0 = 0, this reduces to either of the following two equalities:

{

λ1 = 0,

λ2 = 0,

{

λ1 = 0,

λ3 = 0. �

Figure 1. Wavelet and scaling function with second accuracy

By equation (4.20), to obtain second accuracy and the minimal length of
the filters, we should choose N = 1, that is, cos γ1 = − 1

2 . In fact, in this case,
ψ2, φ2 are the Daubechies’s wavelet function db2 and the corresponding scaling
function. The graph of the above functions are plotted in Figure 1 .

On the other hand, to obtain third accuracy and minimal length, we have
to choose N = 2. Here the equations (4.20) and (4.21) have four solutions:

γ1 = π + arcsin 0.5374, γ2 = − arcsin 0.9392;
γ1 = π + arcsin 0.9756, γ2 = π − arcsin 0.9600;
γ1 = π − arcsin 0.5374, γ2 = − arcsin 0.9392;
γ1 = π − arcsin 0.9756, γ2 = π + arcsin 0.9600.

Take the first solution, and we present the graph of the above functions in
Figure 2.
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Figure 2. Wavelet and scaling function with third accuracy

References

[1] C. Cabrelli, C. Heil, and U. Molter, Accuracy of lattice translates of several multidimen-

sional refinable functions, J. Approx. Theory 95 (1998), no. 1, 5–52.
[2] Q. H. Chen, C. A. Micchelli, S. Peng, and Y. Xu, Multivariate filter banks having matrix

factorizations, SIAM J. Matrix Anal. Appl. 25 (2003), no. 2, 517–531.
[3] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in

Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1992.

[4] C. deBoor, R. A. Devore, and A. Ron, Approximation orders of FSI spaces in L2(Rd),
Constr. Approx. 14 (1998), no. 4, 631–652.

[5] C. Heil, G. Strang, and V. Strela, Approximation by translates of refinable functions,
Numer. Math. 73 (1996), no. 1, 75–94.

[6] R. Q. Jia, Approximation properties of multivariate wavelets, Math. Comp. 67 (1998),
no. 222, 647–665.

[7] Q. Lian, H. Xiao, and Q. Chen, Some properties on multivariate filter banks with a

matrix factorization, Progr. Natur. Sci. (English Ed.) 15 (2005), no. 2, 115–125.
[8] G. Plonka, Approximation order provided by refinable function vectors, Constr. Approx.

13 (1997), no. 2, 221–244.
[9] H. Xiao, Lattice structure for paraunitary linear-phase filter banks with accuracy, Acta

Math. Sin. (Engl. Ser.) 22 (2006), no. 3, 679–688.
[10] , Piecewise Linear Spectral Sequences and Wavelet Filter Banks, Doctoral Thesis,

Graducate School of CAS, May 2005.

College of Science

China Three Gorges University

Yichang 443002, P. R. China

E-mail address: hongying x@ctgu.edu.cn


