SOME PROPERTIES OF TENSOR CENTRE OF GROUPS

Mohammad Reza R. Moghaddam, Payman Niroomand, and S. Hadi Jafari

Abstract

Let $G \otimes G$ be the tensor square of a group G. The set of all elements a in G such that $a \otimes g=1_{\otimes}$, for all g in G, is called the tensor centre of G and denoted by $Z^{\otimes}(G)$. In this paper some properties of the tensor centre of G are obtained and the capability of the pair of groups $\left(G, G^{\prime}\right)$ is determined. Finally, the structure of $J_{2}(G)$ will be described, where $J_{2}(G)$ is the kernel of the map $\kappa: G \otimes G \rightarrow G$.

1. Introduction

Let G and H be two groups which act on themselves by conjugation ${ }^{g} g^{\prime}=$ $g g^{\prime} g^{-1}$ and on each other in such a way that the following compatibility conditions are satisfied:

$$
{ }^{\left({ }^{g} h\right)} g^{\prime}={ }^{g}\left({ }^{h}\left(g^{-1} g^{\prime}\right)\right),{ }^{(h g)} h^{\prime}={ }^{h}\left(g^{g}\left(h^{-1} h^{\prime}\right)\right)
$$

for all g, g^{\prime} in G and h, h^{\prime} in H.
The non-abelian tensor product $G \otimes H$ was introduced by R. Brown and J.-L. Loday in [2] as the group generated by all the symbols $g \otimes h$ subject to the following relations

$$
g g^{\prime} \otimes h=\left({ }^{g} g^{\prime} \otimes{ }^{g} h\right)(g \otimes h), g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes{ }^{h} h^{\prime}\right)
$$

for all g, g^{\prime} in G, h, h^{\prime} in H.
If $G=H$, then $G \otimes G$ is considered to be the non-abelian tensor square, so that it will be focused in this paper. There exists an action of G on $G \otimes G$ satisfying ${ }^{g}\left(g^{\prime} \otimes h\right)={ }^{g} g^{\prime} \otimes{ }^{g} h$ for all g, g^{\prime}, h in G. The following relations hold for all $g, g^{\prime}, h, h^{\prime}$ in G (see [1] for more details).
(i) ${ }^{g}\left(g^{-1} \otimes h\right)=(g \otimes h)^{-1}={ }^{h}\left(g \otimes h^{-1}\right)$;
(ii) ${ }^{(g \otimes h)}\left(g^{\prime} \otimes h^{\prime}\right)={ }^{[g, h]}\left(g^{\prime} \otimes h^{\prime}\right)$;
(iii) $[g, h] \otimes h^{\prime}=(g \otimes h)^{h^{\prime}}(g \otimes h)^{-1}$;
(iv) $g^{\prime} \otimes[g, h]={ }^{g^{\prime}}(g \otimes h)(g \otimes h)^{-1}$;
(v) $\left[g \otimes h, g^{\prime} \otimes h^{\prime}\right]=[g, h] \otimes\left[g^{\prime}, h^{\prime}\right]$.

Received April 22, 2007; Revised August 16, 2007.
2000 Mathematics Subject Classification. 20F99, 20 F 14.
Key words and phrases. non-abelian tensor square, tensor centre, relative central extension, capable group.

Clearly there is an epimorphism κ from $G \otimes G$ onto G^{\prime} given by $g \otimes h \mapsto[g, h]$, so that the kernel of κ is denoted by $J_{2}(G)$. The subgroup $J_{2}(G)$ of $G \otimes G$ is central and its elements are fixed under the action of G by [1, Proposition 4].

Let G be a group and N a normal subgroup G. A relative central extension of the pair (G, N) consists of a group homomorphism $\sigma: M \longrightarrow G$ together with an action of G on M such that:
(i) $\sigma(M)=N$;
(ii) $\sigma\left({ }^{g} m\right)=g(\sigma m) g^{-1}$ for all $g \in G, m \in M$;
(iii) ${ }^{\sigma(m)} m^{\prime}=m m^{\prime} m^{-1}$ for all m, m^{\prime} in M;
(iv) $\operatorname{ker}(\sigma) \subseteq Z_{G}(M)$, where $Z_{G}(M)$ is the set of all elements m in M, which are fixed under the action of G.

The pair (G, N) is capable if it admits a relative central extension such that ker σ is equal to $Z_{G}(M)$. Let $\nabla(G)$ be the subgroup of $J_{2}(G)$, generated by all the elements $g \otimes g$ for all g in G. Define $G \wedge G=G \otimes G / \nabla(G)$, which is called the exterior square of G. The set of all elements $g \in G$ such that $g \wedge g^{\prime}=1$ for all $g^{\prime} \in G$, is said to be the exterior centre of G and denoted by $Z^{\wedge}(G)$. In [4], it is shown that G is capable if and only if $Z^{\wedge}(G)=1$. In Section 2 using this fact, we give some properties of this important subgroup.

Finally, in Section 2 we give an exact sequence related to central subgroup $Z_{G}(G \otimes G)$ and the tensor centre $Z^{\otimes}(G)$. In Section 3, we show that for any two groups A and $B, \nabla(A \times B) \cong \nabla(A * B)$ and then give the structure of the factor group of $J_{2}(A \times B)$. Note that $A * B$ means the free product of the groups A and B.

2. Tensor centre of a group

In this section, the concept of tensor centre $Z^{\otimes}(G)$ of a group G is discussed and some of its properties are obtained. In fact, an exact sequence related to the tensor centre is given and it is proved that $Z^{\otimes}(A \times B)=Z^{\otimes}(A) \times Z^{\otimes}(B)$, when $(|A|,|B|)=1$.

Lemma 2.1. Let N be a normal subgroup of a finite group G. Then the sequence

$$
0 \longrightarrow N \cap Z^{\otimes}(G) \longrightarrow Z^{\otimes}(G) \longrightarrow Z^{\otimes}(G / N)
$$

is exact.
Proof. The result is obtained by using the epimorphism $G \otimes G \longrightarrow G / N \otimes$ G / N.

Note that the above lemma with $N=G^{\prime}$ implies the exactness of the following sequence

$$
0 \longrightarrow G^{\prime} \cap Z^{\otimes}(G) \longrightarrow Z^{\otimes}(G) \longrightarrow Z^{\otimes}\left(G / G^{\prime}\right)
$$

in which $Z^{\otimes}\left(G / G^{\prime}\right)=0$ by $\left[3\right.$, Proposition 18], and hence $Z^{\otimes}(G) \leq G^{\prime}$.

Now, we determine the centre of G as a factor group. To do this, consider the epimorphism $\kappa: G \otimes G \xrightarrow{[,]} G^{\prime}$ with the kernel $J_{2}(G)$. The restriction of κ to $Z_{G}(G \otimes G)$ and the fact that $Z^{\otimes}(G) \leq G^{\prime}$, imply the following:

Proposition 2.2. If G is a finite group, then the following sequence

$$
0 \longrightarrow J_{2}(G) \longrightarrow Z_{G}(G \otimes G) \longrightarrow Z^{\otimes}(G) \longrightarrow 0
$$

is exact.
Corollary 2.3. If G is a finite group and $Z^{\otimes}(G)$ is trivial, then the pair $\left(G, G^{\prime}\right)$ is capable.

Proof. It is easy to check that the map κ defined as above is a relative central extension and so the result holds.

Extending the construction of $Z_{G}(G \otimes G)$, one can easily show that $Z_{G^{\prime}}(G \otimes$ $G)$ is equal to the centre of $G \otimes G$. Put $K=\left\langle t \in G^{\prime} \mid t \otimes s=1_{G \otimes G}, \forall s \in G^{\prime}\right\rangle$ and as in Proposition 2.2, the following sequence is exact:

$$
0 \longrightarrow J_{2}(G) \longrightarrow Z_{G^{\prime}}(G \otimes G) \longrightarrow K \longrightarrow 0 .
$$

It is easily seen that $\operatorname{Inn}(G \otimes G) \cong G^{\prime} / K$.
Proposition 2.4. Under the above assumption, if G is a finite group and K is trivial, then $\operatorname{Inn}(G \otimes G)$ is isomorphic with G^{\prime}. In particular, G^{\prime} is a capable group.

Suppose A and B are two groups. Consider the tensor product $(A \times B) \otimes$ $(A \times B)$ and put

$$
\left.\left.M^{\otimes}=\langle(a, 1) \otimes(1, b)) \mid a \in A, b \in B\right)\right\rangle .
$$

Using this notation, the following lemma is obtained immediately.
Lemma 2.5. Under the above assumption, $e\left(M^{\otimes}\right) \mid \operatorname{gcd}(e(A), e(B))$, where $e(X)$ is the exponent of the group X.

Now if $(a, b) \in Z^{\otimes}(A \times B)$, then $a \in Z^{\otimes}(A)$ and $b \in Z^{\otimes}(B)$, which implies that the homomorphism

$$
\theta: Z^{\otimes}(A \times B) \longrightarrow Z^{\otimes}(A) \times Z^{\otimes}(A)
$$

is injection. Clearly, θ is also surjective when $\operatorname{gcd}(e(A), e(B))=1$. For, let $a \in Z^{\otimes}(A)$ and $b \in Z^{\otimes}(B)$, then for all (c, d) in $A \times B$ and using Lemma 2.5, we obtain

$$
\begin{aligned}
(a, b) \otimes(c, d) & =((a, 1)(1, b) \otimes(c, 1)(1, d)) \\
& =[(1, b) \otimes(c, 1)][(1, b) \otimes(1, d)][(a, 1) \otimes(c, 1)][(a, 1) \otimes(1, d)]=1
\end{aligned}
$$

Hence, the pair (a, b) is in $Z^{\otimes}(A \times B)$ which shows that θ is an isomorphism and so

$$
Z^{\otimes}(A \times B) \cong Z^{\otimes}(A) \times Z^{\otimes}(A)
$$

By the similar method one can show that

$$
Z^{\wedge}(A \times B) \cong Z^{\wedge}(A) \times Z^{\wedge}(A),
$$

if $\operatorname{gcd}(e(A), e(B))=1$. In particular, if $G=G_{p_{1}} \times \cdots \times G_{p_{k}}$ is a nilpotent group with the Sylow p-subgroups $G_{p_{i}}$, then

$$
Z^{\wedge}(G)=Z^{\wedge}\left(G_{p_{1}}\right) \times \cdots \times Z^{\wedge}\left(G_{p_{k}}\right) .
$$

From the above discussion, the following result is obtained, which was already shown in [8, Corollary 3.5].
Proposition 2.6. If $\operatorname{gcd}(e(A), e(B))=1$, then the direct product $A \times B$ is capable if and only if A, B are capable.

3. Some properties of $J_{2}(G)$

In this section, we focus on $J_{2}(G)$ in order to establish a similar exact sequence to Ganea with familiar terms. More precisely, the abelian groups in Ganea sequence, given in [5], are the homomorphic images of the abelian groups in our exact sequence. In addition, using a fact of [6] we also establish a result on $J_{2}(A \times B)$.

Let us recall the following well-known commutative diagram with exact rows and central columns given in [1]:

where Γ is the Whitehead's quadratic functor and $G^{a b}$ is the abelianized of G (see [9]).

The following result of [1] is needed for our further investigation.
Proposition 3.1. If N is a normal subgroup of a given group G with the central extension

$$
1 \longrightarrow N \longrightarrow G \xrightarrow{\pi} G / N \longrightarrow 1
$$

then the following sequence is exact

$$
(N \otimes G) \times(G \otimes N) \quad \xrightarrow{l} G \otimes G \xrightarrow{\pi \otimes \pi} G / N \otimes G / N \longrightarrow 1
$$

in which $\operatorname{Im} l \leq J_{2}(G)$.
Now, by the above discussion we are able to prove the following
Theorem 3.2. Under the above assumptions and notations, the sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Im} l \xrightarrow{i n c} J_{2}(G) \xrightarrow{\pi_{1}} J_{2}(G / N) \xrightarrow{\kappa_{1}} G^{\prime} \cap N \longrightarrow 0 \tag{*}
\end{equation*}
$$

is exact, where $\kappa_{1}(\bar{g} \otimes \bar{h})=[g, h]$ for all \bar{g}, \bar{h} in G / N and π_{1} is the restriction of $\pi \otimes \pi$ to $J_{2}(G)$ as in Proposition 3.1.

Proof. The kernel of the homomorphism π_{1} is equal to $\operatorname{ker}(\pi \otimes \pi) \cap J_{2}(G)$ but $\operatorname{ker} \pi_{1}=\operatorname{Im} l \leq J_{2}(G)$, which gives the exactness of the left side of $(*)$. On the other hand, κ_{1} is well-defined, since N is a central subgroup of G. It is easily seen that $\operatorname{Im} \pi_{1}=\operatorname{ker} \kappa_{1}$, as required.

Corollary 3.3. Under the above assumptions,
(i) $Z_{G}(G \otimes G) \cong J_{2}\left(G / Z^{\otimes}(G)\right)$;
(ii) if $N \leq Z^{\otimes}(G)$, then $e\left(J_{2}(G / N)\right) \mid e\left(J_{2}(G)\right) e(N)$.

Proof. Part (i) follows from the following commutative diagram with exact rows

$$
\begin{gathered}
0 \longrightarrow J_{2}(G) \longrightarrow Z_{G}(G \otimes G) \\
\downarrow \\
0 \longrightarrow Z^{\otimes}(G) \longrightarrow 0 \\
\downarrow \longrightarrow J_{2}(G) \longrightarrow J_{2}\left(G / Z^{\otimes}(G)\right) \longrightarrow Z^{\otimes}(G) \longrightarrow 0
\end{gathered}
$$

and the proof of (ii) follows easily.

Remark 3.4. Note that the sequence

$$
0 \longrightarrow Z_{G}(G \otimes G) \longrightarrow G \otimes G \longrightarrow G^{\prime} / Z^{\otimes}(G) \longrightarrow 1
$$

is exact and when G is a finite group, it is equivalent to the following exact sequence.

$$
0 \longrightarrow J_{2}\left(G / Z^{\otimes}(G)\right) \longrightarrow G / Z^{\otimes}(G) \otimes G / Z^{\otimes}(G) \longrightarrow G^{\prime} / Z^{\otimes}(G) \longrightarrow 1,
$$

as $G \otimes G \cong G / Z^{\otimes}(G) \otimes G / Z^{\otimes}(G)$.
Consider the Ganea exact sequence as in [5]

$$
G \otimes Z \xrightarrow{\gamma} M(G) \longrightarrow M(G / Z) \longrightarrow G^{\prime} \cap Z \longrightarrow 0,
$$

where Z is a central subgroup of G and $M(G)$ denotes the Schur multiplier of G.

Now, we exhibit a close relation between the above sequence and the exact sequence $(*)$.

Clearly the following diagram of exact sequences are commutative.

where $\alpha\left((g \otimes z),\left(z^{\prime} \otimes g^{\prime}\right)\right)=(g \otimes z)\left(g^{\prime} \otimes z^{\prime}\right)^{-1}$ for all g, g^{\prime} in G and z, z^{\prime} in Z. In particular, the following diagram is commutative

$$
\begin{gathered}
0 \longrightarrow J_{2}(G) \longrightarrow J_{2}\left(G / Z^{\otimes}(G)\right) \longrightarrow Z^{\otimes}(G) \longrightarrow 0 \\
\downarrow \\
\downarrow \\
0 \longrightarrow M(G) \longrightarrow M\left(G / Z^{\otimes}(G)\right) \longrightarrow Z^{\otimes}(G) \longrightarrow 0 .
\end{gathered}
$$

Clearly, if we replace the left hand side of the above diagram with $\operatorname{Im} l$ and $\operatorname{Im} \gamma$, respectively. Then the diagram still remains commutative.

Let A and B be two arbitrary groups then in [6], N. D. Gilbert has shown that

$$
J_{2}(A * B) \cong J_{2}(A) \times J_{2}(B) \times\left(A^{a b} \otimes B^{a b}\right)
$$

Finally, in the remaining part of the paper we present a similar isomorphism for $J_{2}(A \times B)$. Clearly, by the diagram (1) the following sequences are exact.

$$
\begin{gathered}
\Gamma\left((A * B)^{a b}\right) \stackrel{\lambda}{\longrightarrow} J_{2}(A * B) \longrightarrow H_{2}(A * B) \longrightarrow 0, \\
\Gamma\left((A \times B)^{a b}\right) \xrightarrow{\lambda^{\prime}} J_{2}(A \times B) \longrightarrow H_{2}(A \times B) \longrightarrow 0 .
\end{gathered}
$$

Using the above discussion we have the following:
Proposition 3.5. There is an isomorphism between $\operatorname{Im} \lambda$ and $\operatorname{Im} \lambda^{\prime}$, i.e.,

$$
\nabla(A * B) \cong \nabla(A \otimes B)
$$

Proof. We know that $\operatorname{Im} \lambda$ is generated by the elements $x \otimes x$ for all x in $A * B$ and $\operatorname{Im} \lambda^{\prime}$ is generated by the elements $(a, b) \otimes(a, b)$ for all (a, b) in $A \times B$. The epimorphism $A * B \longrightarrow A \times B$ induces an epimorphism

$$
\alpha:(A * B) \otimes(A * B) \longrightarrow(A \times B) \otimes(A \times B)
$$

Note that, the restriction of α to $\operatorname{Im} \lambda$ is again an epimorphism onto $\operatorname{Im} \lambda^{\prime}$. So, it is enough to find a left inverse for $\left.\alpha\right|_{\operatorname{Im\lambda } \lambda}$. Clearly there is a homomorphism

$$
(A \times B) \otimes(A \times B) \xrightarrow{\zeta}(A \otimes B) \times(A \otimes B)
$$

such that $\zeta((a, b) \otimes(c, d))=((a \otimes c),(b \otimes d))$ for all a, c in A and b, d in B. Now, observe that $\operatorname{Im} \lambda^{\prime}$ is mapped into $J_{2}(A) \times J_{2}(B)$ by the homomorphism ζ. In [6, Proposition 3.1], it is shown that $\eta: J_{2}(A) \times J_{2}(B) \longrightarrow J_{2}(A * B)$ is also a homomorphism. Therefore

$$
\eta\left(\left.\zeta\right|_{\operatorname{Im} \lambda^{\prime}}((a, b) \otimes(a, b))=(a \otimes a)(b \otimes b) \in J_{2}(A * B)\right.
$$

for all (a, b) in $A \times B$. On the other hand, the abelianization of $A \times B$ induces a homomorphism
$\sigma:(A \times B) \otimes(A \times B) \longrightarrow\left(A^{a b} \otimes A^{a b}\right) \oplus\left(A^{a b} \otimes B^{a b}\right) \oplus\left(B^{a b} \otimes A^{a b}\right) \oplus\left(B^{a b} \otimes B^{a b}\right)$.

Assume π_{2} is the projection to the second summand. Then for all (a, b) in $A \times B$,

$$
\alpha\left(\pi_{2}\left(\left.\sigma\right|_{I m \lambda^{\prime}}((a, b) \otimes(a, b))\right)\right)=(a \otimes b)(b \otimes a)
$$

would be in $J_{2}(A * B)$, where α is the well-defined homomorphism from $A^{a b} \otimes$ $B^{a b}$ into $J_{2}(A * B)$, as given in [6]. Now, let the map $\theta: \operatorname{Im} \lambda^{\prime} \longrightarrow \operatorname{Im} \lambda \leq J_{2}(A *$ B) be the product of $\eta\left(\left.\zeta\right|_{\operatorname{Im} \lambda^{\prime}}\right)$ by $\alpha\left(\pi_{2}\left(\left.\sigma\right|_{\operatorname{Im} \lambda^{\prime}}\right)\right)$. Then θ is a homomorphism and $\theta\left(\left.\alpha\right|_{\operatorname{Im} \lambda}\right)$ is the identity, since $J_{2}(A * B)$ is abelian and

$$
\theta((a, b) \otimes(a, b))=(a \otimes a)(b \otimes b)(a \otimes b)(b \otimes a)=a b \otimes a b
$$

This completes the assertion.
Now, one observes that the map $\mu: A * B \longrightarrow A \times B$ induces a homomorphism

$$
\bar{\mu}: J_{2}(A * B) \longrightarrow J_{2}(A \times B)
$$

which is injective and so $J_{2}(A * B) \unlhd J_{2}(A \times B)$.
Finally, we are able to prove the following:
Theorem 3.6. Let A and B be two groups. Then

$$
J_{2}(A \times B) / J_{2}(A * B) \cong A^{a b} \otimes B^{a b} .
$$

Proof. Clearly, by [7]

$$
H_{2}(A \times B) \cong H_{2}(A) \times H_{2}(B) \times A^{a b} \otimes B^{a b}
$$

and

$$
H_{2}(A * B) \cong H_{2}(A) \times H_{2}(B),
$$

where $H_{2}(X)$ is the second homology of the group X. Thus $H_{2}(A \times B) / H_{2}(A *$ $B) \cong A^{a b} \otimes B^{a b}$ and hence there exists an epimorphism

$$
J_{2}(A \times B) \longrightarrow H_{2}(A \times B) \longrightarrow H_{2}(A \times B) / H_{2}(A * B)
$$

such that $J_{2}(A * B)$ is contained in the kernel of the composition maps. So we have the following surjective

$$
J_{2}(A \times B) / J_{2}(A * B) \longrightarrow H_{2}(A \times B) / H_{2}(A * B)
$$

which gives the result.
In particular, if A and B are two groups such that $A \otimes B=1$, then according to the previous theorem $J_{2}(A \times B) \cong J_{2}(A * B) \cong J_{2}(A) \times J_{2}(B)$.
Acknowledgement. The authors are grateful to the referee for the valuable suggestions.

References

[1] R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177-202.
[2] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, With an appendix by M. Zisman. Topology 26 (1987), no. 3, 311-335.
[3] G. J. Ellis, Tensor products and q-crossed modules, J. London Math. Soc. (2) 51 (1995), no. 2, 243-258.
[4] _, Capability, homology, and central series of a pair of groups, J. Algebra 179 (1996), no. 1, 31-46.
[5] T. Ganea, Homologie et extensions centrales de groupes, C. R. Acad. Sci. Paris Ser. A-B 266 (1968), A556-A558.
[6] N. D. Gilbert, The nonabelian tensor square of a free product of groups, Arch. Math. (Basel) 48 (1987), no. 5, 369-375.
[7] C. Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952), 588-595.
[8] S. Shahriari, On normal subgroups of capable groups, Arch. Math. (Basel) 48 (1987), no. 3, 193-198.
[9] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110.
Mohammad Reza R. Moghaddam
Faculty of Mathematical Sciences
Ferdowsi University of Mashhad
91775, Mashhad, Iran
AND
Khayyam Higher Education Institute 91897, Mashhad, Iran
E-mail address: rezam@ferdowsi.um.ac.ir
Payman Niroomand
Faculty of Mathematical Sciences
Ferdowsi University of Mashhad
91775, Mashhad, Iran
E-mail address: p-niroomand@yahoo.com
S. Hadi Jafari

Faculty of Mathematical Sciences
Ferdowsi University of Mashhad
91775 , Mashhad, Iran
E-mail address: s.hadi-jafari@yahoo.com

