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SOME PROPERTIES OF TENSOR CENTRE OF GROUPS

Mohammad Reza R. Moghaddam, Payman Niroomand, and S. Hadi Jafari

Abstract. Let G ⊗ G be the tensor square of a group G. The set of all
elements a in G such that a ⊗ g = 1⊗, for all g in G, is called the tensor

centre of G and denoted by Z⊗(G). In this paper some properties of the
tensor centre of G are obtained and the capability of the pair of groups
(G, G′) is determined. Finally, the structure of J

2
(G) will be described,

where J
2
(G) is the kernel of the map κ : G ⊗ G → G

′

.

1. Introduction

Let G and H be two groups which act on themselves by conjugation gg′ =
gg′g−1 and on each other in such a way that the following compatibility con-
ditions are satisfied:

(gh)g′ = g(h(g−1

g′)), (hg)h′ = h(g(h−1

h′))

for all g, g′ in G and h, h′ in H .
The non-abelian tensor product G ⊗ H was introduced by R. Brown and

J.-L. Loday in [2] as the group generated by all the symbols g ⊗ h subject to
the following relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h), g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′)

for all g, g′ in G, h, h′ in H .
If G = H , then G ⊗ G is considered to be the non-abelian tensor square,

so that it will be focused in this paper. There exists an action of G on G ⊗ G
satisfying g(g′ ⊗ h) = gg′ ⊗ gh for all g, g′, h in G. The following relations
hold for all g, g′, h, h′ in G (see [1] for more details).

(i) g(g−1 ⊗ h) = (g ⊗ h)−1 = h(g ⊗ h−1) ;
(ii) (g⊗h)(g′ ⊗ h′) = [g,h](g′ ⊗ h′) ;

(iii) [g, h] ⊗ h′ = (g ⊗ h)h′

(g ⊗ h)−1 ;

(iv) g′ ⊗ [g, h] = g′

(g ⊗ h)(g ⊗ h)−1 ;
(v) [g ⊗ h, g′ ⊗ h′] = [g, h] ⊗ [g′, h′].
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Clearly there is an epimorphism κ from G⊗G onto G′ given by g⊗h 7→ [g, h],
so that the kernel of κ is denoted by J

2
(G). The subgroup J

2
(G) of G ⊗ G is

central and its elements are fixed under the action of G by [1, Proposition 4].
Let G be a group and N a normal subgroup G. A relative central extension

of the pair (G, N) consists of a group homomorphism σ : M −→ G together
with an action of G on M such that:

(i) σ(M) = N ;
(ii) σ(gm) = g(σm)g−1 for all g ∈ G, m ∈ M ;
(iii) σ(m)m′ = mm′m−1 for all m, m′ in M ;
(iv) ker (σ) ⊆ ZG(M), where ZG(M) is the set of all elements m in M ,

which are fixed under the action of G.
The pair (G, N) is capable if it admits a relative central extension such that

ker σ is equal to ZG(M). Let ∇(G) be the subgroup of J
2
(G), generated by all

the elements g ⊗ g for all g in G. Define G∧G = G⊗G/∇(G), which is called
the exterior square of G. The set of all elements g ∈ G such that g ∧ g′ = 1 for
all g′ ∈ G, is said to be the exterior centre of G and denoted by Z∧(G). In [4],
it is shown that G is capable if and only if Z∧(G) = 1. In Section 2 using this
fact, we give some properties of this important subgroup.

Finally, in Section 2 we give an exact sequence related to central subgroup
ZG(G ⊗ G) and the tensor centre Z⊗(G). In Section 3, we show that for any
two groups A and B, ∇(A × B) ∼= ∇(A ∗ B) and then give the structure of
the factor group of J

2
(A × B). Note that A ∗ B means the free product of the

groups A and B.

2. Tensor centre of a group

In this section, the concept of tensor centre Z⊗(G) of a group G is discussed
and some of its properties are obtained. In fact, an exact sequence related to
the tensor centre is given and it is proved that Z⊗(A×B) = Z⊗(A)×Z⊗(B),
when (|A|, |B|) = 1.

Lemma 2.1. Let N be a normal subgroup of a finite group G. Then the

sequence

0 −→ N ∩ Z⊗(G) −→ Z⊗(G) −→ Z⊗(G/N)

is exact.

Proof. The result is obtained by using the epimorphism G ⊗ G −→ G/N ⊗
G/N . �

Note that the above lemma with N = G
′

implies the exactness of the fol-
lowing sequence

0 −→ G
′

∩ Z⊗(G) −→ Z⊗(G) −→ Z⊗(G/G
′

),

in which Z⊗(G/G
′

) = 0 by [3, Proposition 18], and hence Z⊗(G) ≤ G
′

.
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Now, we determine the centre of G as a factor group. To do this, consider

the epimorphism κ : G ⊗ G
[ , ]
−→ G

′

with the kernel J
2
(G). The restriction of

κ to ZG(G ⊗ G) and the fact that Z⊗(G) ≤ G
′

, imply the following:

Proposition 2.2. If G is a finite group, then the following sequence

0 −→ J
2
(G) −→ ZG(G ⊗ G) −→ Z⊗(G) −→ 0

is exact.

Corollary 2.3. If G is a finite group and Z⊗(G) is trivial, then the pair (G, G
′

)
is capable.

Proof. It is easy to check that the map κ defined as above is a relative central
extension and so the result holds. �

Extending the construction of ZG(G⊗G), one can easily show that ZG
′ (G⊗

G) is equal to the centre of G ⊗ G. Put K = 〈t ∈ G′| t ⊗ s = 1G⊗G, ∀ s ∈ G′〉
and as in Proposition 2.2, the following sequence is exact:

0 −→ J
2
(G) −→ ZG

′ (G ⊗ G) −→ K −→ 0.

It is easily seen that Inn(G ⊗ G) ∼= G
′

/K.

Proposition 2.4. Under the above assumption, if G is a finite group and K
is trivial, then Inn(G⊗G) is isomorphic with G

′

. In particular, G
′

is a capable

group.

Suppose A and B are two groups. Consider the tensor product (A × B) ⊗
(A × B) and put

M⊗ = 〈(a, 1) ⊗ (1, b)) | a ∈ A, b ∈ B)〉.

Using this notation, the following lemma is obtained immediately.

Lemma 2.5. Under the above assumption, e(M⊗)| gcd(e(A), e(B)), where e(X)
is the exponent of the group X.

Now if (a, b) ∈ Z⊗(A × B), then a ∈ Z⊗(A) and b ∈ Z⊗(B), which implies
that the homomorphism

θ : Z⊗(A × B) −→ Z⊗(A) × Z⊗(A)

is injection. Clearly, θ is also surjective when gcd(e(A), e(B)) = 1. For, let
a ∈ Z⊗(A) and b ∈ Z⊗(B), then for all (c, d) in A × B and using Lemma 2.5,
we obtain

(a, b) ⊗ (c, d) = ((a, 1)(1, b) ⊗ (c, 1)(1, d))

= [(1, b) ⊗ (c, 1)][(1, b) ⊗ (1, d)][(a, 1) ⊗ (c, 1)][(a, 1) ⊗ (1, d)] = 1.

Hence, the pair (a, b) is in Z⊗(A × B) which shows that θ is an isomorphism
and so

Z⊗(A × B) ∼= Z⊗(A) × Z⊗(A).



252 M. R. R. MOGHADDAM, P. NIROOMAND, AND S. HADI JAFARI

By the similar method one can show that

Z∧(A × B) ∼= Z∧(A) × Z∧(A),

if gcd(e(A), e(B)) = 1. In particular, if G = Gp1
× · · · × Gpk

is a nilpotent
group with the Sylow p-subgroups Gpi

, then

Z∧(G) = Z∧(Gp1
) × · · · × Z∧(Gpk

).

From the above discussion, the following result is obtained, which was al-
ready shown in [8, Corollary 3.5].

Proposition 2.6. If gcd(e(A), e(B)) = 1, then the direct product A × B is

capable if and only if A, B are capable.

3. Some properties of J
2
(G)

In this section, we focus on J
2
(G) in order to establish a similar exact se-

quence to Ganea with familiar terms. More precisely, the abelian groups in
Ganea sequence, given in [5], are the homomorphic images of the abelian groups
in our exact sequence. In addition, using a fact of [6] we also establish a result
on J

2
(A × B).

Let us recall the following well-known commutative diagram with exact rows
and central columns given in [1]:

H3(G) - Γ(Gab) - J
2
(G) - H2(G) - 0

H3(G) - Γ(Gab) - G ⊗ G - G ∧ G - 1,

0

?

?

?

G′

?

1

0

?

?

?

G′

?

1

? ?

= =(1)

where Γ is the Whitehead’s quadratic functor and Gab is the abelianized of G
(see [9]).

The following result of [1] is needed for our further investigation.

Proposition 3.1. If N is a normal subgroup of a given group G with the

central extension

1 −→ N −→ G
π

−→ G/N −→ 1,

then the following sequence is exact

(N ⊗ G) × (G ⊗ N) -
l

G ⊗ G -
π ⊗ π

G/N ⊗ G/N - 1,
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in which Im l ≤ J
2
(G).

Now, by the above discussion we are able to prove the following

Theorem 3.2. Under the above assumptions and notations, the sequence

(∗) 0 −→ Im l
inc
−→ J

2
(G)

π1−→ J
2
(G/N)

κ1−→ G
′

∩ N −→ 0

is exact, where κ1(ḡ ⊗ h̄) = [g, h] for all ḡ, h̄ in G/N and π1 is the restriction

of π ⊗ π to J
2
(G) as in Proposition 3.1.

Proof. The kernel of the homomorphism π1 is equal to ker(π ⊗ π) ∩ J
2
(G) but

kerπ1 = Im l≤ J
2
(G), which gives the exactness of the left side of (∗). On the

other hand, κ1 is well-defined, since N is a central subgroup of G. It is easily
seen that Imπ1 = kerκ1, as required. �

Corollary 3.3. Under the above assumptions,

(i) ZG(G ⊗ G) ∼= J
2
(G/Z⊗(G));

(ii) if N ≤ Z⊗(G), then e(J
2
(G/N)) | e(J

2
(G)) e(N).

Proof. Part (i) follows from the following commutative diagram with exact
rows

0 −→ J
2
(G) −→ ZG(G ⊗ G) −→ Z⊗(G) −→ 0
↓ ↓ ↓

0 −→ J
2
(G) −→ J

2
(G/Z⊗(G)) −→ Z⊗(G) −→ 0

and the proof of (ii) follows easily. �

Remark 3.4. Note that the sequence

0 −→ ZG(G ⊗ G) −→ G ⊗ G −→ G′/Z⊗(G) −→ 1

is exact and when G is a finite group, it is equivalent to the following exact
sequence.

0 −→ J
2
(G/Z⊗(G)) −→ G/Z⊗(G) ⊗ G/Z⊗(G) −→ G′/Z⊗(G) −→ 1,

as G ⊗ G ∼= G/Z⊗(G) ⊗ G/Z⊗(G).

Consider the Ganea exact sequence as in [5]

G ⊗ Z
γ

−→ M(G) −→ M(G/Z) −→ G
′

∩ Z −→ 0,

where Z is a central subgroup of G and M(G) denotes the Schur multiplier of
G.

Now, we exhibit a close relation between the above sequence and the exact
sequence (∗).

Clearly the following diagram of exact sequences are commutative.
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(G ⊗ Z) × (Z ⊗ G)
l

−→ J
2
(G) −→ J

2
(G/Z) −→ G

′

∩ Z −→ 0

↓ α ↓ ↓ ↓=

G ⊗ Z
γ

−→ M(G) −→ M(G/Z) −→ G
′

∩ Z −→ 0,

↓ ↓ ↓

0 0 0

where α((g ⊗ z), (z′ ⊗ g′)) = (g ⊗ z)(g′ ⊗ z′)−1 for all g, g′ in G and z, z′ in Z.
In particular, the following diagram is commutative

0 −→ J
2
(G) −→ J

2
(G/Z⊗(G)) −→ Z⊗(G) −→ 0

↓ ↓ ↓
0 −→ M(G) −→ M(G/Z⊗(G)) −→ Z⊗(G) −→ 0.

Clearly, if we replace the left hand side of the above diagram with Iml and
Imγ, respectively. Then the diagram still remains commutative.

Let A and B be two arbitrary groups then in [6], N. D. Gilbert has shown
that

J
2
(A ∗ B) ∼= J

2
(A) × J

2
(B) × (Aab ⊗ Bab).

Finally, in the remaining part of the paper we present a similar isomorphism
for J

2
(A × B). Clearly, by the diagram (1) the following sequences are exact.

Γ((A ∗ B)ab)
λ

−→ J
2
(A ∗ B) −→ H2(A ∗ B) −→ 0,

Γ((A × B)ab)
λ
′

−→ J
2
(A × B) −→ H2(A × B) −→ 0.

Using the above discussion we have the following:

Proposition 3.5. There is an isomorphism between Imλ and Imλ
′

, i.e.,

∇(A ∗ B) ∼= ∇(A ⊗ B).

Proof. We know that Imλ is generated by the elements x⊗ x for all x in A ∗B
and Imλ

′

is generated by the elements (a, b)⊗ (a, b) for all (a, b) in A×B. The
epimorphism A ∗ B −→ A × B induces an epimorphism

α : (A ∗ B) ⊗ (A ∗ B) −→ (A × B) ⊗ (A × B).

Note that, the restriction of α to Imλ is again an epimorphism onto Imλ
′

. So,
it is enough to find a left inverse for α|

Imλ
. Clearly there is a homomorphism

(A × B) ⊗ (A × B)
ζ

−→ (A ⊗ B) × (A ⊗ B)

such that ζ((a, b) ⊗ (c, d)) = ((a ⊗ c), (b ⊗ d)) for all a, c in A and b, d in B.

Now, observe that Imλ
′

is mapped into J
2
(A) × J

2
(B) by the homomorphism

ζ. In [6, Proposition 3.1], it is shown that η : J
2
(A) × J

2
(B) −→ J

2
(A ∗ B) is

also a homomorphism. Therefore

η(ζ|
Imλ

′
((a, b) ⊗ (a, b)) = (a ⊗ a)(b ⊗ b) ∈ J

2
(A ∗ B)

for all (a, b) in A×B. On the other hand, the abelianization of A×B induces
a homomorphism

σ : (A×B)⊗(A×B) −→ (Aab⊗Aab)⊕(Aab⊗Bab)⊕(Bab⊗Aab)⊕(Bab⊗Bab).
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Assume π
2

is the projection to the second summand. Then for all (a, b) in
A × B,

α(π
2
(σ|

Imλ
′
((a, b) ⊗ (a, b)))) = (a ⊗ b)(b ⊗ a)

would be in J
2
(A ∗B), where α is the well-defined homomorphism from Aab ⊗

Bab into J
2
(A∗B), as given in [6]. Now, let the map θ : Imλ

′

−→Imλ ≤ J
2
(A∗

B) be the product of η(ζ|
Imλ

′
) by α(π

2
(σ|Imλ

′ )). Then θ is a homomorphism

and θ(α|Imλ) is the identity, since J
2
(A ∗ B) is abelian and

θ((a, b) ⊗ (a, b)) = (a ⊗ a)(b ⊗ b)(a ⊗ b)(b ⊗ a) = ab ⊗ ab.

This completes the assertion. �

Now, one observes that the map µ : A∗B −→ A×B induces a homomorphism

µ̄ : J
2
(A ∗ B) −→ J

2
(A × B),

which is injective and so J
2
(A ∗ B) E J

2
(A × B).

Finally, we are able to prove the following:

Theorem 3.6. Let A and B be two groups. Then

J
2
(A × B)/J

2
(A ∗ B) ∼= Aab ⊗ Bab.

Proof. Clearly, by [7]

H2(A × B) ∼= H2(A) × H2(B) × Aab ⊗ Bab

and

H2(A ∗ B) ∼= H2(A) × H2(B),

where H2(X) is the second homology of the group X . Thus H2(A×B)/H2(A∗
B) ∼= Aab ⊗ Bab and hence there exists an epimorphism

J
2
(A × B) −→ H2(A × B) −→ H2(A × B)/H2(A ∗ B)

such that J
2
(A ∗B) is contained in the kernel of the composition maps. So we

have the following surjective

J
2
(A × B)/J

2
(A ∗ B) −→ H2(A × B)/H2(A ∗ B),

which gives the result. �

In particular, if A and B are two groups such that A⊗B = 1, then according
to the previous theorem J

2
(A × B) ∼= J

2
(A ∗ B) ∼= J

2
(A) × J

2
(B).
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