References
- Adorjan, P., Distler, J., Lipscher, E., Model, F., Muller, J., Pelet, C., Braun, A., Florl, A. R., Gutig, D., Grabs, G., et al. (2002). Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 30, e21 https://doi.org/10.1093/nar/30.5.e21
- Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 https://doi.org/10.1016/j.cell.2007.05.009
- Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R., Bouman, P., Liu, J. S., Kouzarides, T., and Schreiber, S. L. (2002). Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695-8700 https://doi.org/10.1073/pnas.082249499
- Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., McMahon, S., Karlsson, E. K., Kulbokas, E. J., 3rd, Gingeras, T. R., et al. (2005). Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169-181 https://doi.org/10.1016/j.cell.2005.01.001
- Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326 https://doi.org/10.1016/j.cell.2006.02.041
- Bock, C., Paulsen, M., Tierling, S., Mikeska, T., Lengauer, T., and Walter, J. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2, e26 https://doi.org/10.1371/journal.pgen.0020026
- Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349-353 https://doi.org/10.1038/nature04733
- Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., Ju, J., Bestor, T. H., and Zhang, M. Q. (2006). Computational prediction of methylation status in human genomic sequences. Proc. Natl. Acad. Sci. USA 103, 10713-10716 https://doi.org/10.1073/pnas.0602949103
- Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha, E., Graf, S., Johnson, N., Herrero, J., Tomazou, E. M., et al. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 26, 779-785 https://doi.org/10.1038/nbt1414
- Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., Burton, J., Cox, T. V., Davies, R., Down, T. A., et al. (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378-1385 https://doi.org/10.1038/ng1909
- Fan, S., Zhang, M. Q., and Zhang, X. (2008). Histone methylation marks play important roles in predicting the methylation status of CpG islands. Biochem. Biophys Res. Commun. 374, 559-564 https://doi.org/10.1016/j.bbrc.2008.07.077
- Fang, F., Fan, S., Zhang, X., and Zhang, M. Q. (2006). Predicting methylation status of CpG islands in the human brain. Bioinformatics 22, 2204-2209 https://doi.org/10.1093/bioinformatics/btl377
- Gilbert, N., Thomson, I., Boyle, S., Allan, J., Ramsahoye, B., and Bickmore, W. A. (2007). DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. J. Cell Biol. 177, 401-411 https://doi.org/10.1083/jcb.200607133
- Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S., and Huang, T. H. (2002). Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12, 158-164 https://doi.org/10.1101/gr.202801
- Gribskov, M., and Robinson, N. L. (1996). Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput. Chem. 20, 25-33 https://doi.org/10.1016/S0097-8485(96)80004-0
- Iwase, S., Lan, F., Bayliss, P., de la Torre-Ubieta, L., Huarte, M., Qi, H. H., Whetstine, J. R., Bonni, A., Roberts, T. M., and Shi, Y. (2007). The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077-1088 https://doi.org/10.1016/j.cell.2007.02.017
- JUNG, S., LEE, K. H., and LEE, D. (2007). Enabling Large-Scale Bayesian Network Learning by Preserving Intercluster Directionality. IEICE Transactions on Information and Systems E90-D(7), 1018-1027 https://doi.org/10.1093/ietisy/e90-d.7.1018
- Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R. A., Niveleau, A., Cedar, H., and Simon, I. (2006). Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet. 38, 149-153 https://doi.org/10.1038/ng1719
- Ladurner, A. G., Inouye, C., Jain, R., and Tjian, R. (2003). Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol. Cell 11, 365-376 https://doi.org/10.1016/S1097-2765(03)00035-2
- Liang, G., Lin, J. C., Wei, V., Yoo, C., Cheng, J. C., Nguyen, C. T., Weisenberger, D. J., Egger, G., Takai, D., Gonzales, F. A., and Jones, P. A. (2004). Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl. Acad. Sci. USA 101, 7357-7 https://doi.org/10.1073/pnas.0401866101
- Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Lavine, K., Mittal, V., May, B., Kasschau, K. D., et al. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471-476 https://doi.org/10.1038/nature02651
- Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553-560 https://doi.org/10.1038/nature06008
- Needham, C. J., Bradford, J. R., Bulpitt, A. J., and Westhead, D. R. (2006). Inference in Bayesian networks. Nat. Biotechnol. 24, 51-53 https://doi.org/10.1038/nbt0106-51
- Raisner, R. M., Hartley, P. D., Meneghini, M. D., Bao, M. Z., Liu, C. L., Schreiber, S. L., Rando, O. J., and Madhani, H. D. (2005). Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Cell 123, 233-248 https://doi.org/10.1016/j.cell.2005.10.002
- Robyr, D., Suka, Y., Xenarios, I., Kurdistani, S. K., Wang, A., Suka, N., and Grunstein, M. (2002). Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437-446 https://doi.org/10.1016/S0092-8674(02)00746-8
- Roh, T. Y., Cuddapah, S., Cui, K., and Zhao, K. (2006). The genomic landscape of histone modifications in human T cells. Proc. Natl. Acad. Sci. USA 103, 15782-15787 https://doi.org/10.1073/pnas.0607617103
- Roh, T. Y., Cuddapah, S., and Zhao, K. (2005). Active chromatin domains are defined by acetylation islands revealed by genomewide mapping. Genes Dev. 19, 542-552 https://doi.org/10.1101/gad.1272505
- Rountree, M. R., Bachman, K. E., and Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25, 269-277 https://doi.org/10.1038/77023
- Schmid, C. D., and Bucher, P. (2007). ChIP-Seq data reveal nucleosome architecture of human promoters. Cell 131, 831- 832; author reply 832-833 https://doi.org/10.1016/j.cell.2007.11.017
- Selker, E. U., Tountas, N. A., Cross, S. H., Margolin, B. S., Murphy, J. G., Bird, A. P., and Freitag, M. (2003). The methylated component of the Neurospora crassa genome. Nature 422, 893-897 https://doi.org/10.1038/nature01564
- Tamaru, H., and Selker, E. U. (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277-283 https://doi.org/10.1038/35104508
- Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., and Zhao, K. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897-903 https://doi.org/10.1038/ng.154
- Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., and Schubeler, D. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853-862 https://doi.org/10.1038/ng1598
- Yu, H., Zhu, S., Zhou, B., Xue, H., and Han, J. D. (2008). Inferring causal relationships among different histone modifications and gene expression. Genome Res. 18, 1314-1324 https://doi.org/10.1101/gr.073080.107
- Zilberman, D., Coleman-Derr, D., Ballinger, T., and Henikoff, S. (2008). Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125-129 https://doi.org/10.1038/nature07324
Cited by
- Finding Associations among Histone Modifications Using Sparse Partial Correlation Networks vol.9, pp.9, 2013, https://doi.org/10.1371/journal.pcbi.1003168
- Discovering Cooperative Relationships of Chromatin Modifications in Human T Cells Based on a Proposed Closeness Measure vol.5, pp.12, 2010, https://doi.org/10.1371/journal.pone.0014219