References
- Achterberg, E.P., Van den Berg, C.M.G. and Colombo, C. (2003) High resolution monitoring of dissolved Cu and Co in coastal surface waters of western North Sea. Continental Shelf Research, v. 23, p. 611-623 https://doi.org/10.1016/S0278-4343(03)00003-7
- Algeo, T.J. and Heckel, P.H. (2008) The Late Pennsylvanian Midcontinent Sea of North America: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 268, p. 205-221 https://doi.org/10.1016/j.palaeo.2008.03.049
- Algeo, T.J. and Maynard, J.B. (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, v. 206, p. 289-318 https://doi.org/10.1016/j.chemgeo.2003.12.009
- Algeo, T.J., Schwark, L. and Hower, J.C. (2004) High-resolution geochemistry and sequence stratigraphy of the Hushpuckney Shale (Swope Formation, eastern Kansas): Implications for climato-environmental dynamics of the Late Pennsylvanian Midcontinent Seaway. Chemical Geology, v. 206, p. 259-288 https://doi.org/10.1016/j.chemgeo.2003.12.028
- Arthur, M.A., Dean, W.E., Neff, E.D., Hay, B.J., King, J. and Jones, G. (1994) Varve-calibrated records of carbonate and organic carbon accumulation over the last2000 year in the Black Sea. Global Biogeochemical Cycles in the Climate System, v. 8, p. 195-217 https://doi.org/10.1029/94GB00297
- Breit, G.N. and Wanty, R.B. (1991) Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chemical Geology, v. 91, p. 83-97 https://doi.org/10.1016/0009-2541(91)90083-4
- Calvert, S.E. and Pederson, T.F. (1993) Geochemistry of recent oxic and anoxic sediments: Implications for the geological record. Marine Geology, v. 113, p. 67-88 https://doi.org/10.1016/0025-3227(93)90150-T
- Canfield, D.E. (1994) Factors influencing organic carbon preservation in marine sediments. Chemical Geology, v. 114, p. 315-329 https://doi.org/10.1016/0009-2541(94)90061-2
- Chester, R. (2000) Marine geochemistry. Blackwell, London, 506p
- Cheong, C,H. (1969) Stratigraphy and paleontology of the Samcheog coalfield, Gangweon-do, Korea. Journal of the Geological Society of Korea, v. 5, p. 13-54
- Galloway, W. (1989) Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding surface bounded depositional units. American Association of Petroleum Geologist Bulletin, v. 73, p. 125- 142
- Henderson, G.M. (2002) New oceanic proxies for paleoclimate. Earth and Planetary Science Letter, v. 203, p. 1-13 https://doi.org/10.1016/S0012-821X(02)00809-9
- Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.W., Pattrick, R.A.D., Garner, C.D. and Vaughan, D.J. (1996) Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, v. 56, p. 3631-3642 https://doi.org/10.1016/0016-7037(96)00195-0
- Karl, D.M. and Knauer, G.A. (1991) Microbial production and particle flux in the upper 350 m of the Black Sea. Deep Sea Research, Part A 38, p. 921-942 https://doi.org/10.1016/S0198-0149(10)80017-2
- Lee, H.Y. and Lee, J.D. (1971) Conodont fauna form the Great Limestone Series in Dongjeom district, Samcheog- gun, Gangweon-do and its stratigraphical significance. Journal of the Geological Society of Korea, v. 7, p. 89-101
- Lee, K.W. and Lee, H.Y. (1990) Conodont biostratigraphy of the Upper Choseon Supergroup in Jangseong- Dongjeom area, Gangweondo. Journal of Paleontological Society of Korea, v. 6, p. 188-210
- Lee, Y.N. and Lee, H.Y. (1986) Conodont biostratigraphy of the Jigunsan Shale and Duwibong Limestone in the Nokjeon-Sangdong Area, Yeongweol-Gun, Kangweondo, Korea. Journal of Paleontological Society of Korea, v. 2, p. 114-136
- Loutit, T.S., Hardenbol, J., Vail, P.R. and Baum, G.R. (1988) Condensed sections: the key to age determination and correlation of continental margin sequences. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross. C.A. and Kendall, C.G. (eds.), Sealevel changes: An integrated approach. Society of Economic Paleontologists and Mineralogists Special Publication 42, p. 183-213
- Mitchum, R., Vail, P. and Thompson, S. (1977) Seismic stratigraphy and global changes in sea level, Part 2: The depositional sequence as the basic unit for stratigraphic analysis. In: Payton, C. (ed.), Seismic stratigraphy: Application to hydrocarbon exploration. American Association of Petroleum Geologist Memoir 26, p. 53-62
- Mount, J.F., Hunt, D.L., Greene, L.R. and Dienger, J. (1991) Depositional systems, biostratigraphy and sequence stratigraphy of Lower Cambrian grand cycles, southwestern Great Basin. In: Cooper, J.D. and Stevens, C.H. (eds.) Paleogeography of the Western United States. Pacific Section of Society of Economic Paleontologists and Mineralogists Book 67, p. 209-229
- Morford, J.L. and Emerson, S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, v. 63, p. 1735-1750 https://doi.org/10.1016/S0016-7037(99)00126-X
- Osleger, D.A. and Read, J.F. (1991) Relation of eustasy to stacking patterns of meter-scale carbonate cycle, Late Cambrian, U.S.A. Journal of Sedimentary Petrology, v. 61, p. 1225-1252 https://doi.org/10.1306/D426786B-2B26-11D7-8648000102C1865D
- Piper, D.Z. and Perkins, R.B. (2004) A modern vs. Permian black shale-the hydrography, primary productivity, and water-column chemistry of deposition. Chemical Geology. v. 206, p. 177-197 https://doi.org/10.1016/j.chemgeo.2003.12.006
- Ryu, I.C., Oh, C.W. and Kim, S.W. (2005) A middle Ordovician drowning unconformity on the northeastern flank of the Okcheon (Ogcheon) Belt, Southern Korea. Gondwana Research, v. 8, p. 511-528 https://doi.org/10.1016/S1342-937X(05)71152-7
- Schutter, S.R. (1992) Ordovician hydrocarbon distribution in North America and its relationship to eustatic cycles. In: Webby, B.D. and Laurie, J.R. (eds.), Global perspectives on Ordovician geology. p. 421-432. Balkema, Rotterdam
- Seisbold, E. and Berger, W.H. (1993) The Sea Floor: An introduction to marine geology (second edition). Springer Verlag, New York, 356p
- Timothy, D.A. and Calvert, S.E. (1998) Systematics of variations in excess Al and Al/Ti in sediments from the central equatorial Pacific. Paleoceanography, v. 13, no. 2, p. 127-130 https://doi.org/10.1029/97PA03646
- Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A. (2006) Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, v. 232, p. 12-32 https://doi.org/10.1016/j.chemgeo.2006.02.012
- Vail, P.R., Hardenbol, J. and Todd, R.G. (1984) Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy and biostratigraphy: American Association of Petroleum Geologists Memoir 36, p. 129-144
- Van Wagoner, J.C., Mitchum, R.M., Campion, K.M. and Rahmanian, V.D. (1990) Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high-resolution correlation of time and facies. American Association of Petroleum Geologists Methods in Exploration Series 7, Tulsa, 55p
- Wang, Y. and van Cappellen, P. (1996) A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta, v. 56, p. 171-183 https://doi.org/10.1016/0016-7037(96)00140-8
- Wedepohl, K.H. (1971) Environmental influences on the chemical composition of shales and clays. In: Ahrens, L.H., Press, F., Runcorn, S.K. and Urey, H.C. (eds.), Physics and Chemistry of the Earth. p. 307-331. Pergamon, Oxford
- Wedepohl, K.H. (1991) The composition of the upper Earth's crust and the natural cycles of selected elements. In: Merian, E. (ed.), Metals and their compounds in the natural environment. p. 3-17, Weinheim, Germany
- Wilde, P., Lyons, T.L. and Quinby-Hunt, M.S. (2004) Organic carbon proxies in black shales: Molybdenum. Chemical Geology, v. 206, p. 167-176 https://doi.org/10.1016/j.chemgeo.2003.12.005
- Whitfield, M. (2002) Interactions between phytoplankton and trace metals in the ocean. Advanced Marine Biology, v. 41, p. 3-120 https://doi.org/10.1016/S0065-2881(01)41002-9
- Woo, J. and Chough, S.K. (2007) Depositional processes and sequence stratigraphy of the Jigunsan Formation (Middle Ordovician), Taebaeksan Basin, mideast Korea: Implications for basin geometry and sequence development, Geoscience Journal, v. 11, p. 331-335 https://doi.org/10.1007/BF02857050
- Wright, J. and Colling, A. (1995) Seawater: Its composition, properties and behavior. The Open University, England, 168p
- Yun, C.S. (1999) Three Ordovician cephalopods from the Jigunsan Formation of Korea. Paleontological Research, v. 3, p. 65-80