DOI QR코드

DOI QR Code

수원지역 분진의 입경별 이온성분 분포특성에 관한 연구

Characteristics of Ionic Components in Size-resolved Particulate Matters in Suwon Area

  • 오미석 (경희대학교 환경.응용화학대학 대기오염연구실 및 환경연구센터) ;
  • 이태정 (경희대학교 환경.응용화학대학 대기오염연구실 및 환경연구센터) ;
  • 김동술 (경희대학교 환경.응용화학대학 대기오염연구실 및 환경연구센터)
  • Oh, Mi-Seok (College of Environment & Applied Chemistry and Center for Environmental Studies, Kyung Hee University-Global Campus) ;
  • Lee, Tae-Jung (College of Environment & Applied Chemistry and Center for Environmental Studies, Kyung Hee University-Global Campus) ;
  • Kim, Dong-Sool (College of Environment & Applied Chemistry and Center for Environmental Studies, Kyung Hee University-Global Campus)
  • 발행 : 2009.02.28

초록

The main purpose of this study was to investigate air quality trends of ambient aerosol with obtaining size-fractionated information. The suspended particulate matters were continuously collected on membrane filters and glass fiber filters by an 8-stage cascade impactor for 2 years (Sep. 2005 $\sim$ Sep. 2007) in Kyung Hee University-Global Campus. 8 ionic species ($Na^+$, ${NH_4}^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were analyzed by an IC after performing proper pretreatments of each sample filter. The average concentration levels of each ion were $9.24{\mu}g/m^3$ of ${SO_4}^{2-}$, $7.35{\mu}g/m^3$ of ${NO_3}^-$, $2.81{\mu}g/m^3$ of ${NH_4}^+$, $2.11{\mu}g/m^3$ of $Ca^{2+}$, $1.65{\mu}g/m^3$ of $Cl^-$, $1.87{\mu}g/m^3$ of $Na^+$, $0.80{\mu}g/m^3$ of $Mg^{2+}$, and $0.54{\mu}g/m^3$ of $K^+$, respectively. The distribution pattern of $Na^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${NO_3}^-$ was bi-modal and two peaks appeared in the range of $0.4{\sim}0.7{\mu}m$ and $3.3{\sim}4.7{\mu}m$, respectively. On the other hand, ${SO_4}^{2-}$, ${NH_4}^+$, and $K^+$ showed patterns of uni-modal distribution, mostly abounded in the fine mode group.

키워드

참고문헌

  1. 김용표(2006) 서울의 미세먼지에 의한 대기오염, 한국대기환경학회지, 22(5), 535-553
  2. 김용표, 김성주, 진현철, 백남준, 이종훈, 김진영, 심상규, 강창희, 허철구(1999) 제주도 고산에서의 1994년 여름 측정 : ( I ) 입자 이온 조성, 한국대기보전학회지, 12(3), 297-305
  3. 문광주, 한진석, 공부주, 이민도, 정일록(2005) ABC-EAREX 기간 동안 제주도 고산지역 대기 중 가스상 및 입자상 물질의 분포특성, 한국대기환경학회지, 21(6), 675-687
  4. 박정호, 최금찬(1997) 저압 임팩터를 이용한 대기 에어로졸 입자의 입경분포 측정과 화학조성 자료의 해석, 한국대기환경학회지, 13(6), 475-486
  5. 박지연, 임호진(2006) 대구지역 겨울철과 봄철 미세먼지의 수용성 이온성분 특성, 한국대기환경학회지, 22(5), 627-641
  6. 이태정, 김동술(1997) 수원지역 입자상 오염물질의 오염원 기여도의 추정, 한국대기환경학회지, 13(4), 285-296
  7. 최금찬, 박정호, 임경택(1994) 대기에어로졸 중 음이온성분에 대한 입경분포의 변화특성, 한국대기환경학회지, 10(2), 124-129
  8. 황인조(2003) PMF 모델을 이용한 대기 중 PM-10 오염원의 정량적 기여도 추정, 경희대학교 박사학위논문
  9. Berner, A., Z. Galambos, P. Ctyroky, P. Fruhauf, R. Hitzenberger, B. Gomiscek, H. Puxbaum, H. Hauck, and O. Preining (2004) Relationships of atmospheric aerosol components in the larger region of a central European city, Atmospheric, 38, 3959-3970 https://doi.org/10.1016/j.atmosenv.2004.02.056
  10. Campbell, S.W., M.C. Evans, and N.D. Poor (2002) Predictions of size-resolved aerosol concentrations of ammonium, chloride and nitrate at a bay side site using EQUISOLV II, Atmospheric Environment, 36(27), 4299-4307 https://doi.org/10.1016/S1352-2310(02)00404-1
  11. Chang, Y.S., G.R. Carmichael, H. Kurita, and H. Ueda (1986) An investigation of the formation of ambient $NH_4NO_3$ aerosol, Atmospheric Environment, 20, 1969-1977 https://doi.org/10.1016/0004-6981(86)90338-0
  12. Chow, J.C., C.S. Liu, J. Cassmassi, J.G. Watson, Z. Lu, and L.C. Pritchett (1992) A neighborhood-scale study of PM10 source contributions in Rubidox, CA, Atmospheric Environment, 26A(4), 693-706 https://doi.org/10.1016/0960-1686(92)90181-J
  13. Funasaka, K., M. Sakai, M. Shinya, T. Miyazaki, T. Kamiura, S. Kaneco, K. Ohta, and T. Fujita (2003) Size distributions and characteristics of atmospheric inorganic particles by regional comparative study in Urban Osaka, Japan, Atmospheric Environment, 37, 4597-4605 https://doi.org/10.1016/j.atmosenv.2003.08.004
  14. Hering, S.V. and G.R. Cass (1999) The magnitude of bias in the measurement of PM2.5 arising from volatilization of particulate nitrate from Teflon filters, Air & Waste Manage. Assoc., 49, 725-733 https://doi.org/10.1080/10473289.1999.10463843
  15. Hidy, G.M. (1972) Aerosols and Atmospheric Chemistry, Academic Press
  16. Ho, K.F., S.C. Lee, C.K. Chan, J.C. Yu, J.C. Chow, and X.H. Yao (2003) Characterization of chemical species in $PM_{2.5}$ and $PM_{10}$ aerosols in Hong Kong, Atmospheric Environment, 37(1), 31-39 https://doi.org/10.1016/S1352-2310(02)00804-X
  17. Hu, M., L.Y. He, Y.H. Zhang, M. Wang, Y.P. Kim, and K.C. Moon (2002) Seasonal variation of ionic species in fine particles at Qingdao, China, Atmospheric Environment, 36(38), 5853-5859 https://doi.org/10.1016/S1352-2310(02)00581-2
  18. Keene, W.C. and D.L. Savoie (1998) The pH of deliquesced sea-salt aerosol in polluted marine air, Geophysical Research Letters, 25, 2181-2184 https://doi.org/10.1029/98GL01591
  19. Kerminen, V.M. and A.S. Wexler (1995) Growth laws for atmospheric aerosol particles : an examination of the bimodality of the accumulation mode, Atmospheric Environment, 29, 3263-3275 https://doi.org/10.1016/1352-2310(95)00249-X
  20. Kerminen, V.M., C. Ojanen, T. Pakkanen, R. Hillamo, and M. Merilainen (2000) Low-molecular-weight dicarboxylic acids in un urban and rural atmosphere, Journal of Aerosol Science, 31(3), 349-362 https://doi.org/10.1016/S0021-8502(99)00063-4
  21. Kerminen, V.M., T.A. Pakkanen, and R.E. Hillamo (1997) Interactions between inorganic trace gases and supermicrometer particles at a coastal sites, Atmospheric Environment, 31(17), 2753-2765 https://doi.org/10.1016/S1352-2310(97)00092-7
  22. Langer, S., R.S. Pemberton, and B.J. Finlayson-Pitts (1997) Diffuse reflectance infrared studies of the reaction of synthetic sea salt mixture with NO2 : A key role for hydrates in the kinetics and mechanism, Journal of Physical Chemistry, 101, 1277-1286 https://doi.org/10.1021/jp962122c
  23. Lee, J.H., Y.P. Kim, K.C. Moon, H.K. Kim, and C.B. Lee (2001) Fine particle measurements at two background sites in Korea between 1996 and 1997, Atmospheric Environment, 35(4), 635-643 https://doi.org/10.1016/S1352-2310(00)00378-2
  24. Liang, J.Y. and M.Z. Jacobson (1999) A study of sulfur dioxide oxidation pathways over a range of liquid water contents, pH values, and temperatures, Journal of Geophysical Research, 104, 13749-13769 https://doi.org/10.1029/1999JD900097
  25. McMurry, P.H., M.F. Shephered, and J.S. Vickery (2004) Particulate Matter Science for Policy Makers, Cambridge University Press, pp. 235-281
  26. Meng, Z.Y. and J.H. Seinfeld (1994) On the source of the submicrometer droplet mode of urban and regional aerosols, Aerosol Science and Technology, 20, 253-265 https://doi.org/10.1080/02786829408959681
  27. Noguchi, I. and H. Hara (2004) Ionic imbalance due to hydrogen carbonate from Asian dust, Atmospheric Environment, 38(40), 6969-6976 https://doi.org/10.1016/j.atmosenv.2004.03.077
  28. Park, S.S. and Y.J. Kim (2004) $PM_{2.5}$ particles and size segregated ionic species measured during fall season in three urban sites in Korea, Atmospheric Environment, 38(10), 1459-1471 https://doi.org/10.1016/j.atmosenv.2003.12.004
  29. Parmer, R.S., G.S. Satsangi, M. Kumari, A. Lakhani, S.S. Srivastava, and S. Prakash (2001) Study of size distribution of atmospheric aerosol at Agra, Atmospheric Environment, 35, 693-702 https://doi.org/10.1016/S1352-2310(00)00317-4
  30. Pope, C.A., D.V. Bates, and M.E. Raizenne (1995) Health effects of particulate air pollution : time for reassessment, Environmental Health Perspectives, 103, 472-480 https://doi.org/10.2307/3432586
  31. Schwartz, J. and D.W. Dockery (1992) Increased mortality in Philadelphia associated with daily air pollution concentrations, The American Review of Respiratory Disease, 145, 600-604 https://doi.org/10.1164/ajrccm/145.3.600
  32. Seinfeld, J.H. and S.N. Pandis (1998) Atmospheric chemistry and physics from air pollution to climate change, Wiley-Interscience, New York, USA
  33. Wang, Y., G. Zhuang, A. Tang, H. Yuan, Y. Sun, S. Chen, and A. Zheng (2005a) The ion chemistry and the source of $PM_{2.5}$ aerosol in Beijing, Atmospheric Environment, 39(21), 3771-3784 https://doi.org/10.1016/j.atmosenv.2005.03.013
  34. Wang, Y., G. Zhuang, Y. Sun, and Z. An (2005b) Watersoluble part of the aerosol in the dust storm season evidence of the mixing between mineral and pollution aerosols, Atmospheric Environment, 39(37), 7020-7029 https://doi.org/10.1016/j.atmosenv.2005.08.005
  35. Wilson, W.E., J.C. Chow, C. Claiborn, W. Fusheng, J. Engelbrecht, and J.G. Watson (2002) Monitoring of particulate matter outdoors, Chemosphere, 49, 1009- 1043 https://doi.org/10.1016/S0045-6535(02)00270-9
  36. Whitby, K.T. and B. Cantrell (1976) Atmospheric aerosolcharacteristics and Measurement, International Conference on Environmental Sensing and Assessment, 2, 6pp
  37. Wu, Y., J. Hao, L. Fu, J. Hu, Z. Wang, and U. Tang (2003) Chemical characteristics of airborne particulate matter near major roads and at background locations in Macaco, China, Science Total Environment, 317(1-3), 159-172 https://doi.org/10.1016/S0048-9697(03)00331-0
  38. Yao, X., C.K. Chan, M. Fang, S. Cadle, T. Chan, P. Mulawa, K. He, and B. Ye (2002) The water-soluble ionic composition of $PM_{2.5}$ in Shanghai and Beijing, China, Atmospheric Environment, 37(6), 743-751 https://doi.org/10.1016/S1352-2310(02)00955-X

피인용 문헌

  1. Characteristics of Air Quality in the West-coastal Urban Atmosphere vol.25, pp.6, 2009, https://doi.org/10.5572/KOSAE.2009.25.6.550
  2. in Iksan City during Fall, 2004 vol.36, pp.1, 2010, https://doi.org/10.5668/JEHS.2010.36.1.061
  3. Size Distribution Characteristics of Water-soluble Ionic Components in Airborne Particulate Matter in Busan vol.31, pp.3, 2015, https://doi.org/10.5572/KOSAE.2015.31.3.287
  4. Chemical Composition of Fine Particulate Matter in the Downtown Area of Jeju City vol.27, pp.7, 2018, https://doi.org/10.5322/JESI.2018.27.7.597