DOI QR코드

DOI QR Code

Evaluation of Cementation Effect of Sand Using CPT and DMT

CPT와 DMT에 의한 사질토 고결영향 평가

  • Lee, Moon-Joo (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Choi, Sung-Kun (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Hong, Sung-Jin (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Woo-Jin (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 이문주 (고려대학교 건축.사회환경공학과) ;
  • 최성근 (고려대학교 건축.사회환경공학과) ;
  • 홍성진 (고려대학교 건축.사회환경공학과) ;
  • 이우진 (고려대학교 건축.사회환경공학과)
  • Published : 2009.02.28

Abstract

In this study, the relations of cone tip resistances (qc) and DMT indices of cemented sand are analyzed from a series of calibration chamber tests. The experimental results show that, with increasing the cementation level, three DMT indices also increase. The CPT and DMT do not appear to properly reflect the cementation effect of sand, since the penetration induces the damage of cementation. Nevertheless, the DMT is more sensitive to deformation characteristics of cemented sand than CPT. It is also observed that the $E_D/q_c$ ratio of cemented sand is larger than that of uncemented sand. However, the $K_D-q_c/{\sigma}_v'$ relation is independant of cementation, unlike the result of previous study. In addition, this study evaluates the constrained modulus and cohesion intercept of cemented sand using the relation between cone resistance and dilatometer constrained modulus ($M_D$).

본 연구에서는 대형 챔버에 조성된 고결시료에 미니콘 관입시험과 딜라토미터 시험을 수행하고, 각 시험결과에 반영된 고결영향을 평가하였다. 시험결과 딜라토미터 시험이 콘관입시험보다 모래의 고결에 좀 더 민감하였으나, 두 시험 모두 관입주변의 고결결합을 파괴하기 때문에 고결모래의 변형특성을 정확히 평가할 수 없었다. 모래의 고결정도가 증가할수록 고결모래의 딜라토미터 계수와 콘선단저항의 비($E_D/q_c$)가 증가하였으나, 기존 연구와는 달리 고결모래와 미고결모래의 수평음력지수와 콘선단저항의 관계는 명확히 나타나지 않았다. 콘선단저항과 딜라토미터 횡방향구속 변형계수($M_D$)의 관계로부터 고결모래의 점착력과 횡방향구속 변형계수(M)를 평가하였다.

Keywords

References

  1. 이문주, 최성근, 추현욱, 조용순, 이우진 (2008a), "낙사법으로 조성된 대형 석고 고결시료의 균질성", 한국지반공학회논문집, Vol.24, No.1, pp.91-99
  2. 이문주, 최성근, 추현욱, 이우진 (2008b), "고결모래의 콘선단저항과 변형계수의 관계", 한국지반공학회논문집, Vol.24, No.12, pp.53-63
  3. Akili, W., and Torrance, J.K. (1981), "The development and geotechnical problems of sabkha, with preliminary experiments on the static penetration resistance of cemented sands", Quarterly Journal of Engineering Geology and Hydrogeology, Vol.14, No.1, pp.59-73 https://doi.org/10.1144/GSL.QJEG.1981.014.01.05
  4. Pasqualini, E. (1981), "Cone resistance of a dry medium sand", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Vol.2, pp.427-432
  5. Baldi, G., Bellotti, R., Ghionna, V.N., Jamiolkowski, M., and Lo Presti, D.F.C. (1988), "Modulus of sands from CPTs and DMTs", Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Vol.1, pp.165-170
  6. Been, K., Crooks, J.H, Becker, D.E., and Jefferies, M.G. (1986), "The cone penetration test in sand: part I, state parameter interpretation", Geotechnique, Vol.36, No.2, pp.239-249 https://doi.org/10.1680/geot.1986.36.2.239
  7. Bellotti, R., Benoit, J., Fretti, C., and Jamiolkowski, M. (1997), "Stiffness of Toyoura sand from dilatometer tests" Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.123, No.9, pp.836-846 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(836)
  8. Borden (1991), "Boundary displacement induced by DMT penetration", Proceedings of the International Symposium on Calibration Chamber Testing, Postdam, NewYork, pp.101-118
  9. Campanella, R.G., and Robertson, P.K. (1991), "Use and interpretation of a research dilatometer", Canadian Geotechnical Journal, Vol.28, No.1, pp.113-126 https://doi.org/10.1139/t91-012
  10. Choi, S.K. (2008), Estimation of stress history of sands using CPT and DMT, Ph.D. thesis, Korea University
  11. Cruz, N., and Fonseca, A.V. (2006), "Portuguese experience in residual soil characterization by DMT tests", Proceeding of 2nd International Conference on the Flat Dilatometer, Washington, D.C., pp.359-364
  12. Douglas, B.J., and Olsen, R.S. (1981), "Soil classification using electric cone penetrometer", Symposium on cone Penetration Testing and Experience, ASCE, St. Louis, pp.209-227
  13. Fonseca, A.V., Silva, S.R., and Cruz, N. (2008), "Geotechnical characterization by in situ and lab tests to the back-analysis of a supported excavation in Metro do Porto", Geotechnical and Geological Engineering, Published online
  14. Jamiolkowski, M., Ladd, C.C., Germaine, J.T., and Lancellotta, R. (1985), "New Developments in Field and Laboratory Testing of Soils", Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp.57-153
  15. Jamiolkowski, M., Lo Presti, D.C.F., and Manassero, M. (2003), "Evaluation of relative density and shear strength of sands from CPT and DMT", Soil Behavior and Soft Ground Construction, ASCE GSP 119, pp.201-238
  16. Jamiolkowski, M., Ghionna, V. N., Lancellotta, R., and Pasqualini, E. (1988), "New correlation of penetration tests for design practice" Proceedings of the 1st International Symposium on Penetration Testing, Orlando, Florida, Vol.2, pp.263-296
  17. Joshi, R.C., Achari, G., Kaniraj, S.R., and Wijeweera, H. (1995), "Effect of aging on the penetration resistance of sands", Canadian Geotechnical Journal, Vol.32, pp.767-782 https://doi.org/10.1139/t95-075
  18. Kim, T.J. (2005), Dissipation of porewater pressure due to piezocone penetration in OC clay, Ph.D. dissertation, Korea University
  19. Marchetti, S. (1980), "In situ tests by flat dilatometer", Journal of Geogechnical Engineering Division, ASCE, Vol.106, No.GT3, pp.299-321
  20. Marchetti, S. (1985), "On the field determination of K0 in sand", Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol.5, pp.2667-2672
  21. Marchetti, S., Monaco, P., Totani,G., and Calabrese, M. (2001), "The flat dilatometer test (DMT) in soil investigations", A Report by the ISSMGE Committee TC16, International Conference on In Situ Measurement of Soil Properties, Bali, Indonesia
  22. Puppala, A.J., Acar, Y.B., and Tumay, M.T. (1995), "Cone penetration in very weakely cemented sand", Journal of Geotechnical Engineering, ASCE, Vol.121, No.8, pp.589-600 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:8(589)
  23. Rad, N.S., and Tumay, M.T. (1986), "Effect of cementation on the cone penetration resistance of sand", Use of In Situ Tests in Geotechnical Engineering, GSP 6, ASCE, New York, pp.926-948 https://doi.org/10.1520/GTJ10617J
  24. Robertson, P.K., Campanella, R.G., Gillespie, D., and Grieg, J. (1986), "Use of piezometer cone data", Proceedings of In-Situ '86, ASCE, Specialty Conference, Blacksburg, VA
  25. Salgado, R., Mitchell, J.K., and Jamiolkowski, M. (1998), "Calibration chamber size effects on penetration resistance in sand", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.9, pp.878-888 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(878)