DOI QR코드

DOI QR Code

L, C, X-밴드 다편파 레이더 산란계를 이용한 논 벼 생육인자 추정

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer

  • 김이현 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 홍석영 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 이훈열 (강원대 자연과학대학 지구물리학과)
  • Kim, Yi-Hyun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Suk-Young (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Hoon-Yol (Department of Geophysics, Kangwon National University)
  • 발행 : 2009.02.28

초록

본 연구에서는 다편파 산란계 시스템을 이용하여 얻어진 후방산란계수의 연중 변화를 편파와 입사각에 따라 알아보고 벼 생육인자와의 관계를 통하여 생육인자를 추정하고자 하였다. 2007년도 국립농업과학원 시험포장에 다편파산란계 시스템(L, C, X-band 안테나, 네트워크분석기, RF cable, 입사각 $20^{\circ}{\sim}60^{\circ}$)을 제작 구축하고 벼 이앙기에서 수확기까지 산란특성을 주기적으로 관측하였으며 레이더 방정식을 이용하여 후방산란계수를 계산하여 자료 분석에 사용하였다. 모든 안테나 밴드에서 벼 생육초기(5월말$\sim$6월초)에는 VV-편파가 HH-, HV-편파보다 후방산란계수가 높게 나타났다. C-band의 경우 모든 입사각에서 벼가 자라면서 HH-편파 후방산란계수가 증가하다가 출수기(8월중순경)에 가장 높았고 그 이후 감소하는 경향이었다. X-band는 모든 편파의 후방산란계수가 벼 유수형성기(7월말경)까지 증가하다가 그 후 감소하였으며 등숙기인 9월 중순 이후 다시 증가하는 dual-peak 현상을 보였는데, 특히 VV-편파의 경우 9월 초순부터 후방산란계수 종가가 다른 편파에 비해 크게 나타났다. 파장별 밴드, 편파, 입사각도별 후방산란계수와 작물 생육과의 관계를 분석한 결과 L-band는 바이오매스와의 상관이 높게 나타났고 C-band에서는 엽면적지수와 초장과의 상관이 높게 나타났으며 X-band는 이삭 건물중과 상관이 높게 나타났다 후방산란계수를 이용하여 생육을 추정할 수 있는 회귀식을 작성하고 실측값과의 비교를 통하여 작물 생육 추정을 위한 최적 조건을 구명하였다.

The objective of this study was to measure backscattering coefficients of paddy rice using a L-, C-, and X-band scatterometer system with full polarization and various angles during the rice growth period and to relate backscattering coefficients to rice growth parameters. Radar backscattering measurements of paddy rice field using multifrequency (L, C, and X) and full polarization were conducted at an experimental field located in National Academy of Agricultural Science (NAAS), Suwon, Korea. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer ($20\;MHz{\sim}20\;GHz$), RF cables, and a personal computer that controls frequency, polarization and data storage. The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between $20^{\circ}$ and $60^{\circ}$ with $5^{\circ}$ interval for four polarization (HH, VV, HV, VH), respectively. We measured the temporal variations of backscattering coefficients of the rice crop at L-, C-, X-band during a rice growth period. In three bands, VV-polarized backscattering coefficients were higher than hh-polarized backscattering coefficients during rooting stage (mid-June) and HH-polarized backscattering coefficients were higher than VV-, HV/VH-polarized backscattering coefficients after panicle initiation stage (mid-July). Cross polarized backscattering coefficients in X-band increased towards the heading stage (mid-Aug) and thereafter saturated, again increased near the harvesting season. Backscattering coefficients of range at X-band were lower than that of L-, C-band. HH-, VV-polarized ${\sigma}^{\circ}$ steadily increased toward panicle initiation stage and thereafter decreased, and again increased near the harvesting season. We plotted the relationship between backscattering coefficients with L-, C-, X-band and rice growth parameters. Biomass was correlated with L-band hh-polarization at a large incident angle. LAI (Leaf Area Index) was highly correlated with C-band HH- and cross-polarizations. Grain weight was correlated with backscattering coefficients of X-band VV-polarization at a large incidence angle. X-band was sensitive to grain maturity during the post heading stage.

키워드

참고문헌

  1. 홍석영, 홍진영, 김이현, 오이석, 2007. 지상관측 레이더 산란계를 이용한 벼 군락의 후방산란계수 측정. 대한원격탐사학회지, 23(2): 1-8
  2. Anthony, F. and Stephen, L. Durden. 1998. A threecomponent scattering model for polarimetric SAR data, Remote Sens. Environ, 36(3): 963-973 https://doi.org/10.1109/36.673687
  3. Attema, E. P. and F. T. Ulaby, 1978. Vegetation modeled as a water cloud, Radio Science, 13: 357-364 https://doi.org/10.1029/RS013i002p00357
  4. Bouman. B. A. M., 1991. Crop Parameter Estimation from Ground-Based X-Band (3-cm Wave) Radar backscattering Data, Remote Sens. Environ, 37: 193-205 https://doi.org/10.1016/0034-4257(91)90081-G
  5. Brisco. B., R. J. Brown, J. A. Koehler., G. J. Sofko., and M. J. McKibben, 1990. The Diurnal Pattern of Microwave Backscattering by Wheat, Remote Sens. Environ, 34: 37-47 https://doi.org/10.1016/0034-4257(90)90082-W
  6. Brisco, B. and R. J. Brown, 1998. Agricultural applications with radar, Chapter 7 in Principles & Applications of Imaging Radar, edited by F.M. Henderson and A.J. Lewis, Manual of Remote Sensing Vol.2, Wiley, Danvers, MA. pp.381-406
  7. Inoue, Y., T. Kurosu., H. Maeno, S. Uratsuka., T. Kowu., K. Dabrowska-Zielinska, and J. Qi, 2002. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables, Remote Sensing of Environment, 81: 194-204 https://doi.org/10.1016/S0034-4257(01)00343-1
  8. Hong, S. Y., S. H. Hong, and S. K. Rim, 2000. Relationship between Radarsat backscattering coefficient and rice growth, Korean J. Remote Sensing, 16(2): 109-116 https://doi.org/10.7780/kjrs.2000.16.2.109
  9. Kim, S. B., Y. Kong, and Y. S. Kim, 2000. Radar backscattering measurements of rice crop using X-band scatterometer, IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1467-1471 https://doi.org/10.1109/36.843044
  10. Le, Toan, T. Ribbes. F. Wang, L. Floury, N. K. Ding, J. A. Kong, M. Fujita, and T. Kurosu, 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results, IEEE Transactions on Geoscience and Remote Sensing, 35: 41-56 https://doi.org/10.1109/36.551933
  11. Macelloni, G., P. Palosica, R. Pampalori, F. Marliani, and M. Gai, 2001. The relationship between the backscattering coefficient and biomass of narrow and broad leaf crops, IEEE Transactions on Geoscience and Remote Sensing, 39(4): 873-884 https://doi.org/10.1109/36.917914
  12. Macelloni, G., S. Palosica, P., and R. Pampalori, 2002. Modelling radar backscatter from crops during the growth cycle, Agronomie, 22: 575-579 https://doi.org/10.1051/agro:2002040
  13. Moran, M. S., A. Vidal., D. Troufleau., Y. Inoue, and T. A. Mitchell, 1998. Ku- and C-band SAR for discriminating agricultural crop and soil conditions, IEEE Transactions on Geoscience and Remote Sensing, 36: 265-272 https://doi.org/10.1109/36.655335
  14. Paloscica, S., 1998. An empirical approach to estimating leaf index from multifrequency SAR data, International Journal of Remote Sensing, 19(2): 359-364 https://doi.org/10.1080/014311698216323
  15. Paris, J. F., 1986. The effect of leaf size on the microwave backscattering by corn, Remote Sensing of Environment, 19: 81-95 https://doi.org/10.1016/0034-4257(86)90042-8
  16. Prevot, L., I. Champion, and G. Guyot, 1993. Estimating surface soil moisture and leaf area index of a wheat canopy using a dualfrequency (C and X bands) scatterometer, Remote Sensing of Environment, 46: 331-339 https://doi.org/10.1016/0034-4257(93)90053-Z
  17. Ulaby, F. T., C. T., Allen, G. Eger, and E. T. Kanemasu, 1984. Relating the microwave backscattering coefficient to leaf area index, Remote Sensing of Environment, 14: 113-133 https://doi.org/10.1016/0034-4257(84)90010-5
  18. Ulaby, F. T. and C. Elachi, 1990. Radar Polarimetry for Geoscience Applications, Artech House Inc.
  19. Wigneron, J. P., P. Ferrazzoli., A. Olioso., P. Bertuzzi, and A. Chanzy, 1999. A simple approach to monitor crop biomass from C-band radar data, Remote Sensing of Environment, 69: 179-188 https://doi.org/10.1016/S0034-4257(99)00011-5
  20. Yamaguchi, Y., T. Moriyama, M. Ishido, and H. Yamada, 2005. Four-component scattering model for polarimetric SAR image decomposition, IEEE Transactions on Geoscience and Remote Sensing, 43(8): 1699-1706 https://doi.org/10.1109/TGRS.2005.852084