분화성 갑상선 암에서 FDG 섭취 정도와 병리학적 지표들과의 비교

Comparison of FDG Uptake with Pathological Parameters in the Well-differentiated Thyroid Cancer

  • 최우희 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 정용안 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 김기준 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 박창숙 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 정현석 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 손형선 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 정수교 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 유창영 (가톨릭대학교 의과대학 병원병리학교실)
  • Choi, Woo-Hee (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Chung, Yong-An (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Ki-Jun (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Park, Chang-Suk (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Jung, Hyun-Suk (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Sohn, Hyung-Sun (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Chung, Soo-Kyo (Department of Radiology, College of Medicine, The Catholic University of Korea) ;
  • Yoo, Chang-Young (Department of Hospital Pathology, College of Medicine, The Catholic University of Korea)
  • 발행 : 2009.02.28

초록

목적: 분화성 갑상선 암에서 원발 종양의 F-18 FDG 섭취 정도와 여러 병리학적, 면역조직화학적 지표들과의 연관성을 알아보고자 하였다. 대상 및 방법: 본원에 내원하여 수술 전 F-18 FDG PET/CT 스캔을 시행한 후 갑상선 전 절제술 및 림프절 제거술을 시행한 분화성 갑상선암 환자들을 대상으로 하였다. PET/CT 영상에서 원발성 종양의 SUVmax를 구한 후 SUVmax와 종양의 크기, 림프절 전이, 종양의 다발성, 갑상선 밖으로의 침습, 갑상선염 동반 여부와 같은 병리학적 인자들과 Ki-67 표지을, EGFR, COX-2, 그리고 Galectin-3 같은 면역조직화학적 지표들과 관계가 있는지를 독립표본 T 검정을 사용하여 알아보았다. 결과: 106명의 환자 중 102명은 유두상암이었고 4명은 여포상암이었다. 1 cm보다 큰 종양에서의 평균 SUVmax는 1 cm이하 종양에서의 평균 SUVmax보다 의미 있게 높았다($7.8{\pm}8.5$ vs. $3.6{\pm}3.1$, p=0.004). 그 외 림프절 전이, 종양의 다발성, 갑상선 밖으로의 침습, 갑상선염 동반 유무, Ki-67 표지율, EGFR, COX-2, Galectin-3 발현 유무에 따라 분화성 갑상선 암의 SUVmax는 통계학적으로 유의한 차이가 없었다. 결론: 분화성 갑상선 암에서 F-18 FDG의 섭취 정도는 원발성 종양의 크기와 통계적으로 유의한 연관성이 있었다. 그러나 Ki-67 표지율, EGFR, COX-2, Galectin-3 발현 유무와 F-18 FDG섭취 정도는 유의한 관련성이 없었다.

Purpose: Differentiated thyroid cancer (DTC) has variable degree of F-18 FDG avidity. The purpose of this study was to evaluate the relationship between F-18 FDG uptake and pathological or immunohistochemical features of DTC. Materials and Methods: DTC patients who underwent both pre-operative F-18 FDG PET/CT scan and surgery were included in the study. Maximum standardized uptake values (SUVmax) of primary tumor were calculated. If the primary tumor showed no perceptibly increased F-18 FDG uptake, region of interest was drawn based on finding of a portion of the PET/CT images. Pathological and immunohistochemical markers such as presence of lymph node (LN) metastasis and underlying thyroiditis, tumor size, Ki-67 labeling index, expressions of EGFR, COX-2, and Galectin-3 were evaluated. Results: Total of 106 patients was included (102 papillary carcinomas, 4 follicular carcinomas). The mean SUVmax of the large tumors (above 1 cm) was significantly higher than the mean SUVmax of small (equal to or less than 1 cm) ones ($7.8{\pm}8.5$ vs. $3.6{\pm}3.1$, p=0.004). No significant difference in F-18 FDG uptake was found according to the presence or absence of LN metastasis and underlying thyroiditis, or the degree of Ki-67 labeling index, expression of EGFR, COX- 2 and Galectin-3. Conclusion: In conclusion, the degree of F-18 FDG uptake in DTC was associated with the size of primary tumor. But there seem to be no relationship between F-18 FDG uptake of DTC and expression of Ki-67, EGFR, COX-2 and Galectin-3.

키워드

참고문헌

  1. Schhnnberger M, Arcangioli O, Piekarski JD, Tubiana M, Parmentier C. Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays. J Nucl Med 1988;29:1790-4
  2. Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Muller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37: 1468-72
  3. Grunwald F, Kalicke T, Feine U, Lietzenmayer R, Scheidhauer K, Dietlein M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999;26:1547-52 https://doi.org/10.1007/s002590050493
  4. Hooft L, van der Veldt AA, van Diest PJ, Hoekstra OS, Berkhof J, Teule GJ, et al. [$^{18}F$]fluorodeoxyglucose uptake in recurrent thyroid cancer is related to hexokinase expression in the primary tumor. J Din Endocrinol Metab 2005;90:328-34 https://doi.org/10.1210/jc.2004-0779
  5. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:1342-8 https://doi.org/10.1007/s002590050158
  6. Wang W, Macapinlac H, Larson SM, Yeh SD, Akhurst T, Finn RD, et al. [$^{18}F$]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic ($^{131}$)I whole body scans and elevated serum thyroglobulin levels. J Clin Endncrinol Metab 1999;84:2291-302 https://doi.org/10.1210/jc.84.7.2291
  7. Palmedo H, Bucerius J, Joe A, Strunk H, Hortling N, Meyka S, et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006;47:616-24
  8. Lang BH, Lo CY, Chan WF, Lam KY, Wan KY. Prognostic factors in papillary and follicular thyroid carcinoma: their implications for cancer staging. Ann Surg Oncol 2007;14:730-8 https://doi.org/10.1245/s10434-006-9207-5
  9. Endl E, Gerdes J. The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res 2000;257:231-7 https://doi.org/10.1006/excr.2000.4888
  10. Novosel I, Bulimbasic S, Ramljak V, Matkovic B, Dosen D, Separovic V. p53, bcl-2 and Ki-67 in the diagnosis of insular thyroid gland cancer. Case report with a review of literature. Lijec Vjesn 2006; 128:264-7
  11. Mu DB, Wang SP, Yang WF, Fu Z, Chen XX, Sun XR, et al. Correlation between FDG PET/CT and the expression of glutl and ki-67 antigen in esophageal cancer. Zhonghua Zhong Liu Za Zhi 2007;29:30-3
  12. Vesselle H, Salskov A, Turcotte E, Wiens L, Schmidt R, Jordan CD, et al. Relationship between non-small cell lung cancer FDG uptake at PET, tumor histology, and Ki-67 proliferation index. J Thorac Oncol 2008;3:971-8 https://doi.org/10.1097/JTO.0b013e31818307a7
  13. Lemoine NR, Hughes CM, Gullick WJ, Brown CL, Wynford-Thomas D. Abnormalities of the EGF receptor system in human thyroid neoplasia. Int J Cancer 1991;49:558-61 https://doi.org/10.1002/ijc.2910490414
  14. Westermark K, Lundqvist M, Wallin G, Dahlman T, Hacker GW, Heldin NE, et al. EGF-receptors in human normal and pathological thyroid tissue. Histopathology 1996;28:221-7 https://doi.org/10.1046/j.1365-2559.1996.d01-427.x
  15. Dub QY, Gum ET, Gerend PL, Raper SE, Clark OH. Epidermal growth factor receptors in normal and neoplastic thyroid tissue. Surgery 1985;98:1000-7
  16. Nicholson S, Richard J, Sainsbury C, Halcrow P, Kelly P, Angus B, et al. Epidermal growth factor receptor (EGFr); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br J Cancer 1991;63:146-50
  17. Akslen LA, Myking AO, Salvesen H, Varhaug JE. Prognostic impact of EGF-receptor in papillary thyroid carcinoma. Br J Cancer 1993;68:808-12 https://doi.org/10.1038/bjc.1993.432
  18. Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schror K. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 1999;59:198-204
  19. Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 1998;58:3761-4
  20. Specht MC, Tucker ON, Hocever M, Gonzalez D, Teng L, Fahey TJ 3rd. Cyclooxygenase-2 expression in thyroid nodules. J Din Endocrinol Metab 2002;87:358-63 https://doi.org/10.1210/jc.87.1.358
  21. Ristimaki A, Honkanen N, Jankala H, Sipponen P, Harkonen M. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res 1997;57:1276-80
  22. Siironen P, Ristimaki A, Nordling S, Louhimo J, Haapiainen R, Haglund C. Expression of COX-2 is increased with age in papillary thyroid cancer. Histopathology 2004;44:490-7 https://doi.org/10.1111/j.1365-2559.2004.01880
  23. Ito Y, Yoshida H, Nakano K, Takamura Y, Miya A, Kobayashi K, et al. Cyclooxygenase-2 expression in thyroid neoplasms. Histopathology 2003;42:492-7 https://doi.org/10.1046/j.1365-2559.2003.01624.x
  24. Cornetta AJ, Russell JP, Cunnane M, Keane WM, Rothstein JL. cyclooxygenase-2 expression in human thyroid carcinoma and Hashimoto's thyroiditis. Laryngoscope 2002; 112:238-42 https://doi.org/10.1097/00005537-200202000-00008
  25. Nose F, Ichikawa T, Fujiwara M, Okayasu I. Up-regulation of cyclooxygenase-2 expression in lymphocytic thyroiditis and thyroid tumors: significant correlation with inducible nitric oxide synthase. Am J Clin Pathol 2002;117:546-51 https://doi.org/10.1309/9CCJ-XQ8P-PMFM-M65K
  26. Ito S, Kato K, Ikeda M, Iwano S, Makino N, Tadokoro M, et al. Comparison of $^{18}F$-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 2007;48:889-95 https://doi.org/10.2967/jnumed.106.039479
  27. Inohara H, Akahani S, Koths K, Raz A. Interactions between galectin-3 and Mac-2-binding protein mediate cell-cell adhesion. Cancer Res 1996;56:4530-4
  28. Kuwabara I, Liu FT. Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 1996;156:3939-44
  29. Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci USA 1996;93:6737-42 https://doi.org/10.1073/pnas.93.13.6737
  30. Raz A, Zhu DG, Hogan V, Shah N, Raz T, Karkash R, et al. Evidence for the role of 34-kDa galactoside-binding lectin in transformation and metastasis. Int J Cancer 1990;46:871-7 https://doi.org/10.1002/ijc.2910460520
  31. Nangia-Makker P, Sarvis R, Visscher DW, Bailey-Penrod J, Raz A, Sarkar FH. Galectin-3 and L1 retrotransposons in human breast carcinomas. Breast Cancer Res Treat 1998;49:171-83 https://doi.org/10.1023/A:1005913810250
  32. Kawachi K, Matsushita Y, Yonezawa S, Nakano S, Shirao K, Natsugoe S, et al. Galectin-3 expression in various thyroid neoplasms and its possible role in metastasis formation. Hum Pathol 2000;31:428-33 https://doi.org/10.1053/hp.2000.6534
  33. Kim HR, Lin HM, Biliran H, Raz A. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res 1999;59:4148-54
  34. Yamazaki K, Kawai A, Kawaguchi M, Hibino Y, Li F, Sasahara M, et al. Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21 (WAF1/Cip1/Sdi1), and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CCl4. Biochem Biophys Res Commun 2001;280: 1077-84 https://doi.org/10.1006/bbrc.2000.4193
  35. Matarrese P, Fusco O, Tinari N, Natoli C, Liu FT, Semeraro ML, et al. Galectin-3 overexpression protects from apoptosis by improving cell adhesion properties. Int J Cancer 2000;85:545-54 https://doi.org/10.1002/(SICI)1097-0215(20000215)85:4<545::AID-IJC17>3.0.CO;2-N
  36. Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A. Galectin-3: a novel antiapoptotic molecule with a functional BH1(NWGR) domain of Bcl-2 family. Cancer Res 1997;57:5272-6
  37. Liu FT, Rabinovich GA. Gdlectins as modulators of tumour progression. Nat Rev Cancer 2005;5:29-41 https://doi.org/10.1038/nrc1527
  38. Bartolazzi A, Gasbarri A, Papotti M, Bussolati G, Lucantc T, Khan A, et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet 2001;357:1644-50 https://doi.org/10.1016/S0140-6736(00)04817-0
  39. De Potter T, Flamen P, Van Cutsem E, Penninckx F, Filez L, Bormans G, et al. Whole-body PET with FDG for the diagnosis of recurrent gastric cancer. Eur J Nucl Med Mol Imaging 2002;29:525-9 https://doi.org/10.1007/s00259-001-0743-8
  40. Durie BG, Waxman AD, D'Agnolo A, Williams CM. Whole-body $^{18}F$-Foo PET identifies high-risk myeloma. J Nucl Med 2002;43:1457-63
  41. Miller TR, Pinkus E, Dehdashti F, Grigsby PW. Improved prognostic value of $^{18}F$-FDG PET using a simple visual analysis of tumor characteristics in patients with cervical cancer. J Nucl Med 2003;44: 192-7
  42. Padrna MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 2003;64:227-37 https://doi.org/10.1023/A:1025665820001
  43. Pandit N, Gonen M, Krug L, Larson SM. Prognostic value of [$^{18}F$]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging 2003;30:78-84 https://doi.org/10.1007/s00259-002-0937-8