DOI QR코드

DOI QR Code

Gene-Diet Interaction on Cancer Risk in Epidemiological Studies

  • Lee, Sang-Ah (Department of Preventive Medicine, Kangwon National University School of Medicine)
  • 발행 : 2009.11.30

초록

Genetic factors clearly play a role in carcinogenesis, but migrant studies provide unequivocal evidence that environmental factors are critical in defining cancer risk. Therefore, one may expect that the lower availability of substrate for biochemical reactions leads to more genetic changes in enzyme function; for example, most studies have indicated the variant MTHFR genotype 677TT is related to biomarkers, such as homocysteine concentrations or global DNA methylation particularly in a low folate diet. The modification of a phenotype related to a genotype, particularly by dietary habits, could support the notion that some of inconsistencies in findings from molecular epidemiologic studies could be due to differences in the populations studied and unaccounted underlying characteristics mediating the relationship between genetic polymorphisms and the actual phenotypes. Given the evidence that diet can modify cancer risk, gene-diet interactions in cancer etiology would be anticipated. However, much of the evidence in this area comes from observational epidemiology, which limits the causal inference. Thus, the investigation of these interactions is essential to gain a full understanding of the impact of genetic variation on health outcomes. This report reviews current approaches to gene-diet interactions in epidemiological studies. Characteristics of gene and dietary factors are divided into four categories: one carbon metabolism-related gene polymorphisms and dietary factors including folate, vitamin B group and methionines; oxidative stress-related gene polymorphisms and antioxidant nutrients including vegetable and fruit intake; carcinogen-metabolizing gene polymorphisms and meat intake including heterocyclic amins and polycyclic aromatic hydrocarbon; and other gene-diet interactive effect on cancer.

키워드

참고문헌

  1. Beetstra S, Thomas P, Salisbury C, Turner J, Fenech M. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. Mutat Res 2005; 578(1-2): 317-326 https://doi.org/10.1016/j.mrfmmm.2005.05.012
  2. Duthie SJ. Folic acid deficiency and cancer: Mechanisms of DNA instability. Br Med Bull 1999; 55(3): 578-592 https://doi.org/10.1258/0007142991902646
  3. Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res 2001; 475(1-2): 7-20 https://doi.org/10.1016/S0027-5107(01)00070-7
  4. Shrubsole MJ, Gao YT, Cai Q, Shu XO, Dai Q, Jin F, et al. MTR and MTRR polymorphisms, dietary intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15(3): 586-588 https://doi.org/10.1158/1055-9965.EPI-05-0576
  5. Sharp L, Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: A HuGE review. Am J Epidemiol 2004; 159(5): 423-443 https://doi.org/10.1093/aje/kwh066
  6. Ericson U, Sonestedt E, Ivarsson MI, Gullberg B, Carlson J, Olsson H, et al. Folate intake, methylenetetrahydrofolate reductase polymorphisms, and breast cancer risk in women from the Malmo Diet and Cancer cohort. Cancer Epidemiol Biomarkers Prev 2009; 18(4): 1101-1110 https://doi.org/10.1158/1055-9965.EPI-08-0401
  7. Suzuki T, Matsuo K, Hirose K, Hiraki A, Kawase T, Watanabe M, et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis 2008; 29(2): 356-362 https://doi.org/10.1093/carcin/bgm295
  8. Lissowska J, Gaudet MM, Brinton LA, Chanock SJ, Peplonska B, Welch R, et al. Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: A population-based case-control study and metaanalyses. Int J Cancer 2007; 120(12): 2696-2703 https://doi.org/10.1002/ijc.22604
  9. Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Feigelson HS, Thun MJ, et al. Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence. Cancer Epidemiol Biomarkers Prev 2007; 16(6): 1140-1147 https://doi.org/10.1158/1055-9965.EPI-06-1037
  10. Xu X, Gammon MD, Wetmur JG, Rao M, Gaudet MM, Teitelbaum SL, et al. A functional 19-base pair deletion polymorphism of dihydrofolate reductase (DHFR) and risk of breast cancer in multivitamin users. Am J Clin Nutr 2007; 85(4): 1098-1102 https://doi.org/10.1093/ajcn/85.4.1098
  11. Chen J, Gammon MD, Chan W, Palomeque C, Wetmur JG, Kabat GC, et al. One-carbon metabolism, MTHFR polymorphisms, and risk of breast cancer. Cancer Res 2005; 65(4): 1606-1614 https://doi.org/10.1158/0008-5472.CAN-04-2630
  12. Le Marchand L, Haiman CA, Wilkens LR, Kolonel LN, Henderson BE. MTHFR polymorphisms, diet, HRT, and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2004; 13(12): 2071-2077
  13. Wang J, Gajalakshmi V, Jiang J, Kuriki K, Suzuki S, Nagaya T, et al. Associations between 5,10-methylenetetrahydrofolate reductase codon 677 and 1298 genetic polymorphisms and environmental factors with reference to susceptibility to colorectal cancer: A case-control study in an Indian population. Int J Cancer 2006; 118(4): 991-997 https://doi.org/10.1002/ijc.21438
  14. Murtaugh MA, Curtin K, Sweeney C, Wolff RK, Holubkov R, Caan BJ, et al. Dietary intake of folate and co-factors in folate metabolism, MTHFR polymorphisms, and reduced rectal cancer. Cancer Causes Control 2007; 18(2): 153-163 https://doi.org/10.1007/s10552-006-0099-2
  15. Jiang Q, Chen K, Ma X, Li Q, Yu W, Shu G, et al. Diets, polymorphisms of methylenetetrahydrofolate reductase, and the susceptibility of colon cancer and rectal cancer. Cancer Detect Prev 2005; 29(2): 146-154 https://doi.org/10.1016/j.cdp.2004.11.004
  16. Giovannucci E, Chen J, Smith-Warner SA, Rimm EB, Fuchs CS, Palomeque C, et al. Methylenetetrahydrofolate reductase, alcohol dehydrogenase, diet, and risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev 2003; 12(10): 970-979
  17. Le Marchand L, Wilkens LR, Kolonel LN, Henderson BE. The MTHFR C677T polymorphism and colorectal cancer: The multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2005; 14(5): 1198-1203 https://doi.org/10.1158/1055-9965.EPI-04-0840
  18. Hazra A, Wu K, Kraft P, Fuchs CS, Giovannucci EL, Hunter DJ. Twenty-four nonsynonymous polymorphisms in the one-carbon metabolic pathway and risk of colorectal adenoma in the Nurses’ Health Study. Carcinogenesis 2007; 28(7): 1510-1519 https://doi.org/10.1093/carcin/bgm062
  19. van den Donk M, Buijsse B, van den Berg SW, Ocke MC, Harryvan JL, Nagengast FM, et al. Dietary intake of folate and riboflavin, MTHFR C677T genotype, and colorectal adenoma risk: A Dutch case-control study. Cancer Epidemiol Biomarkers Prev 2005; 14(6): 1562-1566 https://doi.org/10.1158/1055-9965.EPI-04-0419
  20. Theodoratou E, Farrington SM, Tenesa A, McNeill G, Cetnarskyj R, Barnetson RA, et al. Dietary vitamin B6 intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2008; 17(1): 171-182 https://doi.org/10.1158/1055-9965.EPI-07-0621
  21. Ulrich CM, Kampman E, Bigler J, Schwartz SM, Chen C, Bostick R, et al. Colorectal adenomas and the C677T MTHFR polymorphism: Evidence for gene-environment interaction? Cancer Epidemiol Biomarkers Prev 1999; 8(8): 659-668
  22. Otani T, Iwasaki M, Hanaoka T, Kobayashi M, Ishihara J, Natsukawa S, et al. Folate, vitamin B6, vitamin B12, and vitamin B2 intake, genetic polymorphisms of related enzymes, and risk of colorectal cancer in a hospital-based casecontrol study in Japan. Nutr Cancer 2005; 53(1): 42-50 https://doi.org/10.1207/s15327914nc5301_5
  23. Boyapati SM, Bostick RM, McGlynn KA, Fina MF, Roufail WM, Geisinger KR, et al. Folate intake, MTHFR C677T polymorphism, alcohol consumption, and risk for sporadic colorectal adenoma (United States). Cancer Causes Control 2004; 15(5): 493-501 https://doi.org/10.1023/B:CACO.0000036447.45446.2c
  24. Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C—>T polymorphism affect cancer risk: Intake recommendations. J Nutr 2003; 133(11 Suppl 1): 3748S-3753S https://doi.org/10.1093/jn/133.11.3748S
  25. Hustad S, Ueland PM, Vollset SE, Zhang Y, Bjorke-Monsen AL, Schneede J. Riboflavin as a determinant of plasma total homocysteine: Effect modification by the methylenetetrahydrofolate reductase C677T polymorphism. Clin Chem 2000; 46(8 Pt 1): 1065-1071
  26. McNulty H, McKinley MC, Wilson B, McPartlin J, Strain JJ, Weir DG, et al. Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: Implications for riboflavin requirements. Am J Clin Nutr 2002; 76(2): 436-441 https://doi.org/10.1093/ajcn/76.2.436
  27. Jacques PF, Kalmbach R, Bagley PJ, Russo GT, Rogers G, Wilson PW, et al. The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene. J Nutr 2002; 132(2): 283-288 https://doi.org/10.1093/jn/132.2.283
  28. Shi Q, Zhang Z, Neumann AS, Li G, Spitz MR, Wei Q. Case-control analysis of thymidylate synthase polymorphisms and risk of lung cancer. Carcinogenesis 2005; 26(3): 649-656 https://doi.org/10.1093/carcin/bgh351
  29. Shi Q, Zhang Z, Li G, Pillow PC, Hernandez LM, Spitz MR, et al. Polymorphisms of methionine synthase and methionine synthase reductase and risk of lung cancer: A casecontrol analysis. Pharmacogenet Genomics 2005; 15(8): 547-555 https://doi.org/10.1097/01.fpc.0000170916.96650.70
  30. Shi Q, Zhang Z, Li G, Pillow PC, Hernandez LM, Spitz MR, et al. Sex differences in risk of lung cancer associated with methylenetetrahydrofolate reductase polymorphisms. Cancer Epidemiol Biomarkers Prev 2005; 14(6): 1477-1484 https://doi.org/10.1158/1055-9965.EPI-04-0905
  31. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J 2003; 17(10): 1195-1214 https://doi.org/10.1096/fj.02-0752rev
  32. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP. Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 1999; 26(1-2): 202-226 https://doi.org/10.1016/S0891-5849(98)00196-8
  33. Li Y, Ambrosone CB, McCullough MJ, Ahn J, Stevens VL, Thun MJ, et al. Oxidative stressrelated genotypes, fruit and vegetable consumption and breast cancer risk. Carcinogenesis 2009; 30(5): 777-784 https://doi.org/10.1093/carcin/bgp053
  34. He C, Tamimi RM, Hankinson SE, Hunter DJ, Han J. A prospective study of genetic polymorphism in MPO, antioxidant status, and breast cancer risk. Breast Cancer Res Treat 2009; 113(3): 585-594 https://doi.org/10.1007/s10549-008-9962-z
  35. Lee SA, Fowke JH, Lu W, Ye C, Zheng Y, Cai Q, et al. Cruciferous vegetables, the GSTP1 Ile105Val genetic polymorphism, and breast cancer risk. Am J Clin Nutr 2008; 87(3): 753-760 https://doi.org/10.1093/ajcn/87.3.753
  36. Ahn J, Nowell S, McCann SE, Yu J, Carter L, Lang NP, et al. Associations between catalase phenotype and genotype: Modification by epidemiologic factors. Cancer Epidemiol Biomarkers Prev. 2006; 15(6): 1217-1222 https://doi.org/10.1158/1055-9965.EPI-06-0104
  37. Slanger TE, Chang-Claude J, Wang-Gohrke S. Manganese superoxide dismutase Ala-9Val polymorphism, environmental modifiers, and risk of breast cancer in a German population. Cancer Causes Control 2006; 17(8): 1025-1031 https://doi.org/10.1007/s10552-006-0043-5
  38. McCullough ML, Stevens VL, Diver WR, Feigelson HS, Rodriguez C, Bostick RM, et al. Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: A nested case-control study. Breast Cancer Res 2007; 9(1): R9 https://doi.org/10.1186/bcr1642
  39. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, et al. Effects of glutathione S-transferase A1 (GSTA1) genotype and potential modifiers on breast cancer risk. Carcinogenesis 2006; 27(9): 1876-1882 https://doi.org/10.1093/carcin/bgl038
  40. Shen J, Gammon MD, Terry MB, Wang L, Wang Q, Zhang F, et al. Polymorphisms in XRCC1 modify the association between polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, dietary antioxidants, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2005; 14(2): 336-342 https://doi.org/10.1158/1055-9965.EPI-04-0414
  41. Shen J, Terry MB, Gammon MD, Gaudet MM, Teitelbaum SL, Eng SM, et al. MGMT genotype modulates the associations between cigarette smoking, dietary antioxidants and breast cancer risk. Carcinogenesis 2005; 26(12): 2131-2137 https://doi.org/10.1093/carcin/bgi179
  42. Gaudet MM, Gammon MD, Santella RM, Britton JA, Teitelbaum SL, Eng SM, et al. MnSOD Val-9Ala genotype, pro- and antioxidant environmental modifiers, and breast cancer among women on Long Island, New York. Cancer Causes Control 2005; 16(10): 1225-1234 https://doi.org/10.1007/s10552-005-0375-6
  43. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, et al. Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol 2005; 162(10): 943-952 https://doi.org/10.1093/aje/kwi306
  44. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, et al. Myeloperoxidase genotype, fruit and vegetable consumption, and breast cancer risk. Cancer Res 2004; 64(20): 7634-7639 https://doi.org/10.1158/0008-5472.CAN-04-1843
  45. Ambrosone CB, Freudenheim JL, Thompson PA, Bowman E, Vena JE, Marshall JR, et al. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 1999; 59(3): 602-606
  46. Ambrosone CB, Coles BF, Freudenheim JL, Shields PG. Glutathione-S-transferase (GSTM1) genetic polymorphisms do not affect human breast cancer risk, regardless of dietary antioxidants. J Nutr 1999; 129(2S Suppl): 565S-568S https://doi.org/10.1093/jn/129.2.565S
  47. Lancaster JR Jr, Xie K. Tumors face NO problems? Cancer Res 2006; 66(13): 6459-6462 https://doi.org/10.1158/0008-5472.CAN-05-2900
  48. Arnhold J. Properties, functions, and secretion of human myeloperoxidase. Biochemistry (Mosc) 2004; 69(1): 4-9 https://doi.org/10.1023/B:BIRY.0000016344.59411.ee
  49. Gilbert DL, Colton CA. Reactive Oxygen Species in Biological Systems: An Interdisciplinary Approach. New York: Kluwer Academic/Plenum Publishers; 1999
  50. Egeberg R, Olsen A, Autrup H, Christensen J, Stripp C, Tetens I, et al. Meat consumption, Nacetyl transferase 1 and 2 polymorphism and risk of breast cancer in Danish postmenopausal women. Eur J Cancer Prev 2008; 17(1): 39-47 https://doi.org/10.1097/CEJ.0b013e32809b4cdd
  51. Brandt B, Hermann S, Straif K, Tidow N, Buerger H, Chang-Claude J. Modification of breast cancer risk in young women by a polymorphic sequence in the egfr gene. Cancer Res 2004; 64(1): 7-12 https://doi.org/10.1158/0008-5472.CAN-03-2623
  52. van der Hel OL, Peeters PH, Hein DW, Doll MA, Grobbee DE, Ocke M, et al. GSTM1 null genotype, red meat consumption and breast cancer risk (The Netherlands). Cancer Causes Control 2004; 15(3): 295-303 https://doi.org/10.1023/B:CACO.0000024255.16305.f4
  53. Krajinovic M, Ghadirian P, Richer C, Sinnett H, Gandini S, Perret C, et al. Genetic susceptibility to breast cancer in French- Canadians: Role of carcinogen-metabolizing enzymes and gene-environment interactions. Int J Cancer 2001; 92(2): 220-225 https://doi.org/10.1002/1097-0215(200102)9999:9999<::AID-IJC1184>3.0.CO;2-H
  54. Delfino RJ, Sinha R, Smith C, West J, White E, Lin HJ, et al. Breast cancer, heterocyclic aromatic amines from meat and Nacetyltransferase 2 genotype. Carcinogenesis 2000; 21(4): 607-615 https://doi.org/10.1093/carcin/21.4.607
  55. Deitz AC, Zheng W, Leff MA, Gross M, Wen WQ, Doll MA, et al. N-Acetyltransferase-2 genetic polymorphism, well-done meat intake, and breast cancer risk among postmenopausal women. Cancer Epidemiol Biomarkers Prev 2000; 9(9): 905-910
  56. Gertig DM, Hankinson SE, Hough H, Spiegelman D, Colditz GA, Willett WC, et al. N-acetyl transferase 2 genotypes, meat intake and breast cancer risk. Int J Cancer 1999; 80(1): 13-17 https://doi.org/10.1002/(SICI)1097-0215(19990105)80:1<13::AID-IJC3>3.0.CO;2-W
  57. Ambrosone CB, Freudenheim JL, Sinha R, Graham S, Marshall JR, Vena JE, et al. Breast cancer risk, meat consumption and Nacetyltransferase (NAT2) genetic polymorphisms. Int J Cancer 1998; 75(6): 825-830 https://doi.org/10.1002/(SICI)1097-0215(19980316)75:6<825::AID-IJC2>3.0.CO;2-X
  58. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene; A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 1996; 226(2): 561-565 https://doi.org/10.1006/bbrc.1996.1394
  59. Li H, Kantoff PW, Giovannucci E, Leitzmann MF, Gaziano JM, Stampfer MJ, et al. Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Cancer Res 2005; 65(6): 2498-2504 https://doi.org/10.1158/0008-5472.CAN-04-3535
  60. Mikhak B, Hunter DJ, Spiegelman D, Platz EA, Wu K, Erdman JW Jr, et al. Manganese superoxide dismutase (MnSOD) gene polymorphism, interactions with carotenoid levels and prostate cancer risk. Carcinogenesis 2008; 29(12): 2335-2340 https://doi.org/10.1093/carcin/bgn212
  61. Cotterchio M, Boucher BA, Manno M, Gallinger S, Okey AB, Harper PA. Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2008; 17(11): 3098-3107 https://doi.org/10.1158/1055-9965.EPI-08-0341
  62. Butler LM, Millikan RC, Sinha R, Keku TO, Winkel S, Harlan B, et al. Modification by Nacetyltransferase 1 genotype on the association between dietary heterocyclic amines and colon cancer in a multiethnic study. Mutat Res 2008;638(1-2): 162-174 https://doi.org/10.1016/j.mrfmmm.2007.10.002
  63. Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Sebille V, Colman H, et al. Combinations of cytochrome P450 gene polymorphisms enhancing the risk for sporadic colorectal cancer related to red meat consumption. Cancer Epidemiol Biomarkers Prev 2007; 16(7): 1460-1467 https://doi.org/10.1158/1055-9965.EPI-07-0236
  64. Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ. Genetic variation in the nucleotide excision repair pathway and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15(11): 2263-2269 https://doi.org/10.1158/1055-9965.EPI-06-0449
  65. Murtaugh MA, Ma KN, Caan BJ, Sweeney C, Wolff R, Samowitz WS, et al. Interactions of peroxisome proliferator-activated receptor {gamma} and diet in etiology of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2005; 14(5): 1224-1229 https://doi.org/10.1158/1055-9965.EPI-04-0681
  66. Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hunter DJ. APC Asp1822Val and Gly2502Ser polymorphisms and risk of colorectal cancer and adenoma. Cancer Epidemiol Biomarkers Prev 2005; 14(4): 863-870 https://doi.org/10.1158/1055-9965.EPI-04-0687
  67. Tiemersma EW, Voskuil DW, Bunschoten A, Hogendoorn EA, Witteman BJ, Nagengast FM, et al. Risk of colorectal adenomas in relation to meat consumption, meat preparation, and genetic susceptibility in a Dutch population. Cancer Causes Control 2004; 15(3): 225-236 https://doi.org/10.1023/B:CACO.0000024263.44973.92
  68. Sweeney C, Coles BF, Nowell S, Lang NP, Kadlubar FF. Novel markers of susceptibility to carcinogens in diet: Associations with colorectal cancer. Toxicology 2002; 181-182: 83-87 https://doi.org/10.1016/S0300-483X(02)00259-7
  69. Le Marchand L, Donlon T, Seifried A, Wilkens LR. Red meat intake, CYP2E1 genetic polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2002; 11(10 Pt 1): 1019-1024
  70. Tiemersma EW, Kampman E, Bueno de Mesquita HB, Bunschoten A, van Schothorst EM, Kok FJ, et al. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: Results from a Dutch prospective study. Cancer Causes Control 2002; 13(4): 383-393 https://doi.org/10.1023/A:1015236701054
  71. Wright ME, Peters U, Gunter MJ, Moore SC, Lawson KA, Yeager M, et al. Association of variants in two vitamin e transport genes with circulating vitamin e concentrations and prostate cancer risk. Cancer Res 2009; 69(4): 1429-1438 https://doi.org/10.1158/0008-5472.CAN-08-2343
  72. Zhou XF, Cui J, DeStefano AL, Chazaro I, Farrer LA, Manolis AJ, et al. Polymorphisms in the promoter region of catalase gene and essential hypertension. Dis Markers 2005; 21(1): 3-7 https://doi.org/10.1155/2005/487014
  73. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8- oxodG. Nature 1991; 349(6308): 431-434 https://doi.org/10.1038/349431a0
  74. Le Marchand L, Donlon T, Lum-Jones A, Seifried A, Wilkens LR. Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev 2002; 11(4): 409-412
  75. Sorensen M, Raaschou-Nielsen O, Hansen RD, Tjonneland A, Overvad K, Vogel U. Interactions between the OGG1 Ser326Cys polymorphism and intake of fruit and vegetables in relation to lung cancer. Free Radic Res 2006; 40(8): 885-891 https://doi.org/10.1080/10715760600733129
  76. Hecht SS. Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J Nutr 1999; 129(3): 768S-774S https://doi.org/10.1093/jn/129.3.768S
  77. London SJ, Yuan JM, Chung FL, Gao YT, Coetzee GA, Ross RK, et al. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: A prospective study of men in Shanghai, China. Lancet 2000; 356(9231): 724-729 https://doi.org/10.1016/S0140-6736(00)02631-3
  78. Lewis S, Brennan P, Nyberg F, Ahrens W, Constantinescu V, Mukeria A, et al. Re: Spitz, M. R., Duphorne, C. M., Detry, M. A., Pillow, P. C., Amos, C. I., Lei, L., de Andrade, M., Gu, X., Hong, W. K., and Wu, X. Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol. Biomark. Prev., 9: 1017-1020, 2000. Cancer Epidemiol Biomarkers Prev 2001; 10(10): 1105-1106
  79. Zhao B, Seow A, Lee EJ, Poh WT, Teh M, Eng P, et al. Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore. Cancer Epidemiol Biomarkers Prev 2001; 10(10): 1063-1067
  80. Wang LI, Giovannucci EL, Hunter D, Neuberg D, Su L, Christiani DC. Dietary intake of Cruciferous vegetables, Glutathione Stransferase (GST) polymorphisms and lung cancer risk in a Caucasian population. Cancer Causes Control 2004; 15(10): 977-985 https://doi.org/10.1007/s10552-004-1093-1
  81. Takezaki T, Gao CM, Wu JZ, Li ZY, Wang JD, Ding JH, et al. hOGG1 Ser(326)Cys polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int J Cancer 2002; 99(4): 624-627 https://doi.org/10.1002/ijc.10400
  82. Tsukino H, Hanaoka T, Otani T, Iwasaki M, Kobayashi M, Hara M, et al. hOGG1 Ser326Cys polymorphism, interaction with environmental exposures, and gastric cancer risk in Japanese populations. Cancer Sci 2004; 95(12): 977-983 https://doi.org/10.1111/j.1349-7006.2004.tb03186.x
  83. Huang WY, Chow WH, Rothman N, Lissowska J, Llaca V, Yeager M, et al. Selected DNA repair polymorphisms and gastric cancer in Poland. Carcinogenesis 2005; 26(8): 1354-1359 https://doi.org/10.1093/carcin/bgi084
  84. Hansen RD, Krath BN, Frederiksen K, Tjonneland A, Overvad K, Roswall N, et al. GPX1 Pro(198)Leu polymorphism, erythrocyte GPX activity, interaction with alcohol consumption and smoking, and risk of colorectal cancer. Mutat Res 2009; 664(1-2): 13-19 https://doi.org/10.1016/j.mrfmmm.2009.01.009
  85. Lang NP, Butler MA, Massengill J, Lawson M, Stotts RC, Hauer-Jensen M, et al. Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiol Biomarkers Prev 1994; 3(8): 675-682
  86. Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 1997; 37: 269-296 https://doi.org/10.1146/annurev.pharmtox.37.1.269
  87. Grant DM, Hughes NC, Janezic SA, Goodfellow GH, Chen HJ, Gaedigk A, et al. Human acetyltransferase polymorphisms. Mutat Res 1997; 376(1-2): 61-70 https://doi.org/10.1016/S0027-5107(97)00026-2
  88. Snyderwine EG. Some perspectives on the nutritional aspects of breast cancer research. Food-derived heterocyclic amines as etiologic agents in human mammary cancer. Cancer 1994; 74(3 Suppl): 1070-1077 https://doi.org/10.1002/1097-0142(19940801)74:3+<1070::AID-CNCR2820741515>3.0.CO;2-7
  89. Kampman E, Slattery ML, Bigler J, Leppert M, Samowitz W, Caan BJ, et al. Meat consumption, genetic susceptibility, and colon cancer risk: A United States multicenter case-control study. Cancer Epidemiol Biomarkers Prev 1999; 8(1): 15-24
  90. Welfare MR, Cooper J, Bassendine MF, Daly AK. Relationship between acetylator status, smoking, and diet and colorectal cancer risk in the north-east of England. Carcinogenesis 1997; 18(7): 1351-1354 https://doi.org/10.1093/carcin/18.7.1351
  91. Le Marchand L, Hankin JH, Wilkens LR, Pierce LM, Franke A, Kolonel LN, et al. Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2001; 10(12): 1259-1266
  92. Murtaugh MA, Sweeney C, Ma KN, Potter JD, Caan BJ, Wolff RK, et al. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer. Nutr Cancer 2006; 55(1): 35-43 https://doi.org/10.1207/s15327914nc5501_5
  93. Iwasaki M, Hamada GS, Nishimoto IN, Netto MM, Motola J Jr, Laginha FM, et al. Isoflavone, polymorphisms in estrogen receptor genes and breast cancer risk in casecontrol studies in Japanese, Japanese Brazilians and non-Japanese Brazilians. Cancer Sci 2009; 100(5): 927-933 https://doi.org/10.1111/j.1349-7006.2009.01118.x
  94. Hedelin M, Balter KA, Chang ET, Bellocco R, Klint A, Johansson JE, et al. Dietary intake of phytoestrogens, estrogen receptor-beta polymorphisms and the risk of prostate cancer. Prostate 2006; 66(14): 1512-1520 https://doi.org/10.1002/pros.20487
  95. Low YL, Taylor JI, Grace PB, Mulligan AA, Welch AA, Scollen S, et al. Phytoestrogen exposure, polymorphisms in COMT, CYP19, ESR1, and SHBG genes, and their associations with prostate cancer risk. Nutr Cancer 2006; 56(1): 31-39 https://doi.org/10.1207/s15327914nc5601_5
  96. Kotsopoulos J, Ghadirian P, El-Sohemy A, Lynch HT, Snyder C, Daly M, et al. The CYP1A2 genotype modifies the association between coffee consumption and breast cancer risk among BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev 2007; 16(5): 912-916 https://doi.org/10.1158/1055-9965.EPI-06-1074
  97. Wong HL, Seow A, Arakawa K, Lee HP, Yu MC, Ingles SA. Vitamin D receptor start codon polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in Singapore Chinese. Carcinogenesis 2003; 24(6): 1091-1095 https://doi.org/10.1093/carcin/bgg059
  98. Ingles SA, Wang J, Coetzee GA, Lee ER, Frankl HD, Haile RW. Vitamin D receptor polymorphisms and risk of colorectal adenomas (United States). Cancer Causes Control 2001; 12(7): 607-614 https://doi.org/10.1023/A:1011292002475
  99. Hubner RA, Muir KR, Liu JF, Logan RF, Grainge MJ, Houlston RS. Dairy products, polymorphisms in the vitamin D receptor gene and colorectal adenoma recurrence. Int J Cancer 2008; 123(3): 586-593 https://doi.org/10.1002/ijc.23536
  100. Dai Q, Shrubsole MJ, Ness RM, Schlundt D, Cai Q, Smalley WE, et al. The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. Am J Clin Nutr 2007; 86(3): 743-751 https://doi.org/10.1093/ajcn/86.3.743

피인용 문헌

  1. Gene-Environment Interaction: A Genetic-Epidemiological Approach vol.29, pp.3, 2009, https://doi.org/10.2478/v10011-010-0021-z
  2. 환경성 발암 기전에서 유전자-환경 상호작용의 역할 vol.36, pp.1, 2009, https://doi.org/10.5668/jehs.2010.36.1.001
  3. Potentially estrogenic polychlorinated biphenyls congeners serum levels and its relation with lung cancer vol.33, pp.9, 2009, https://doi.org/10.1002/jat.2763
  4. Improvement of gamete quality by stimulating and feeding the endogenous antioxidant system: mechanisms, clinical results, insights on gene-environment interactions and the role of diet vol.33, pp.12, 2009, https://doi.org/10.1007/s10815-016-0767-4
  5. Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver vol.80, pp.19, 2009, https://doi.org/10.1080/15287394.2017.1357366
  6. Genetic polymorphisms and folate status vol.57, pp.5, 2009, https://doi.org/10.1111/cga.12232
  7. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases vol.22, pp.1, 2009, https://doi.org/10.3390/molecules22010105
  8. Genetic Variants Shaping Inter-individual Differences in Response to Dietary Intakes—A Narrative Review of the Case of Vitamins vol.7, pp.None, 2009, https://doi.org/10.3389/fnut.2020.558598