
In the more than 100 genome wide association studies
(GWAS) conducted in the past 5 years, more than 250
genetic loci contributing to more than 40 common diseases
and traits have been identified. Whilst many genes have
been linked to a trait, both their individual and combined
effects are small and unable to explain earlier estimates of
heritability. Given the rapid changes in disease incidence
that cannot be accounted for by changes in diagnostic
pract ises,  there is  need to have wel l  character ized
exposure information in addition to genomic data for the
study of gene-environment interactions. The case-control
and cohort study designs are most suited for studying
associations between risk factors and occurrence of an
outcome. However, the case control study design is subject
to several biases and hence the preferred choice of the

prospective cohort study design in investigating gene-
environment interactions. A major limitation of utilising the
prospective cohort study design is the long duration of
follow-up of participants to accumulate adequate outcome
data.  The GWAS paradigm is a t imely reminder for
traditional epidemiologists who often perform one- or few-
at-a- t ime hypothesis- test ing studies wi th the main
hallmarks of GWAS being the agnostic approach and the
massive dataset derived through large-scale international
collaborations.
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INTRODUCTION

In the more than 100 genome wide

association studies (GWAS) conducted in the

past 5 years, more than 250 genetic loci

contributing to more than 40 common diseases

and traits have been identified [1]. Whilst many

genes have been linked to a trait, both their

individual and combined effects are small and

unable to explain earlier estimates of

heritability [2,3]. A major drive for GWAS to

explore the genetic variance of common

diseases was based on the hypothesis that

“common diseases would be caused by

common, low-penetrance variants when

enough of them showed up in the same

person,”but this hypothesis is currently being

challenged [2]. 

There may be genetic variants and

mechanisms other than common low-

penetrance single nucleotide polymorphisms

like copy number variations [2,4,5] or epistasis

that account for the missing hereditability. Rare

variants either single-site or structural may

have much larger effects than common variants

but these cannot be elucidated through the

current GWAS design [1].

Unfortunately, the current plethora of GWAS

has diverted the role of non-genetic factors in

the aetiology of common diseases. It is crucial

to capitalize on the increased throughput and

precision of measuring genetic factors to

understand more precisely the role of gene-

environment interactions in common diseases

and traits.

ROLE OF NON-GENETIC
FACTORS AND GENE-ENVI
RONMENT INTERACTIONS

The role of environmental factors (broadly

defined as non-genetic factors) in the aetiology

of diseases have been well known in the pre-

genomic era. Rapid changes in disease

incidence within a few decades that cannot be

accounted for by changes in diagnostic or

notification practises suggests the prominent

role of non-genetic factors. For example, the

rapid rise in breast cancer incidence in

Singapore compared to Sweden was attributed

to the sharp decline in fertility in the 1970s [6].

Migrant studies have clearly shown that the

migrants adopt the disease patterns of the host

country within a short period of time [7,8].

Furthermore, reduction of environmental risk

factors like smoking and hormone replacement

therapy led to a corresponding decline in the

related disease incidence [9-12]. 

There are also clear epidemiological evidence

for interaction between genetic and

environmental factors in disease causation

[13,14]. The field of epigenetics has also

introduced a new angle to the study of gene-

environment interactions. Environmental

factors have been shown to cause epigenetic

changes like methylation and histone

modifications resulting in heritable changes in

gene function without a change in the DNA

sequence [14]. However, not every gene-

environment interaction results in an epigenetic
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modification or has easily accessible epigenetic

markers. There is therefore a need to have well

characterized exposure information in addition

to genomic data for the study of gene-

environment interactions. 

THE COHORT STUDY DE-
SIGN TO MEASURE GENE-
ENVIRONMENT INTERAC-
TIONS

The case-control and cohort study designs are

most suited for studying the association

between risk factors and the occurrence of an

outcome. In a case-control study, cases and

non-cases (controls) of the outcome of interest

are selected from the same study-base. The

exposure status is then determined

retrospectively. 

The GWAS era has popularized the case-

control study design [15]. It is well suited for

GWAS as the risk factor is a genetic factor with

germline mutations. This factor is not subjected

to recall bias and is stable as it does not change

with the onset of disease. However, it can still

be potentially biased by subject selection,

namely prevalence-incidence bias where rapid

onset and fatal diseases (eg. coronary heart

disease), mild or silent cases, and diseases with

short episodes may be missed [16].

Respondent bias, where those participants with

positive family histories are more likely to

participate [17], may also occur. With the

incorporation of environmental exposures,

recall bias occurs when disease status

influences the reporting of exposures, for

example those with the disease may be asked

many times about exposure to a potential

cause, whereas those without disease may only

be asked once [18]. This makes it difficult to

establish a clear temporal relationship between

the cause and the effect of the disease.

The appropriate selection of controls is

challenging as the use of convenient controls

(eg. hospital controls) has been shown

previously to lead to erroneous conclusions

leading to indentifying extraneous factors

rather than risk factors [19,20].

Reducing bias is the principal reason for the

choice of the prospective cohort study design

in investigating gene-environment interactions

[21]. Prevalence-incidence bias in case

identification is minimised as all participants

are followed in a systematic way with all cases

having an equal likelihood of being detected

[21].  Respondent bias and recall bias are

avoided by collecting data from participants

before the onset of disease and fatality [21].

Cohort studies can be used to answer

multiple hypothesis questions defined at the

beginning of the study, as well as yet-to-be

formulated hypotheses [5]. This study design

can be considered more scientficially rigorous

as both biological samples and environmental

exposures are collected before the onset of

disease. This is considered to be important in

establishing the link towards causality [22-24].

An additional advantage of this study design

is that a  case control study can be nested

within the main cohort where only a small

sample of non-diseased participants would be

concurrently evaluated with the cases [21,25].

Cohort studies can also screen for pre-disease

markers from samples collected prior to the

onset of disease [21,26].

A major limitation of utilising the prospective

cohort study design is the long duration of

follow-up of participants to accumulate

adequate outcome data [27,28]. This can be

accommodated for by the use of pre-disease

markers to define the outcomes or the use of

continuous measurements as the outcome. 

COHORT STUDIES IN THE
PRE-GENOMICS ERA

There are a number of well-known cohort

studies that have contributed significantly to

the understanding of the etiology of common

chronic diseases. The most notable is the

British Doctors Study initiated by the late Sir

Doll et al. [29]. This was a prospective cohort

study conducted from 1951-2001 on 34,439

male doctors in the United Kingdom. The

study aimed to compare the hazards of

cigarette smoking in men who formed their

habits at different periods, and the extent of the

reduction in risk when cigarette smoking was

stopped at different ages. The initial outcome

measure was overall mortality by smoking

habit [29] and this was subsequently expanded

to incidence of various cancers and smoking-

related diseases. Exposure data was through

repeated questionnaires and outcomes were

obtained through medical records and death

certificates. There was no biological specimen

collection.

The Framingham Heart study, which aimed

at identifying cardiovascular risk factors,

differed slightly from the British Doctors Study

in that blood specimens were obtained and

stored. This allowed for the identification of

serum and plasma biomarkers and

subsequently genomic analyses. Unfortunately,

the GWAS that arose from the Framingham

Heart Study was underpowered [30].

Other notable studies in the pre-genomic era

would include the Physicians’Health Study

[31,32], the Nurses’Health Study [33] and the

European Prospective Investigation into

Cancer and Nutrition (EPIC) [34]. There were

also several cohorts in Asia like the Singapore

Chinese Health Study [24], the Korean

National Prospective Occupational Cohort

Study [35] and the Korean National Health

Service Prospective Cohort Study [36] and all

these included blood specimens making it

possible to explore gene-environment

interactions.

COHORT STUDIES OF THE
FUTURE

To maximize on the emerging technologies

in genomics and other ‘omics’, Collins

proposed a list of optimal characteristics of a

prospective gene-environment cohort study

[37]. These include:
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Project [42].

The ACC was established in 2004, to

understand the relationship between genetics,

environmental exposures, and disease etiology

through the formation of a cohort of at least 1

million healthy people internationally who will

be followed over time to various disease

outcomes. A current collaboration is a study

focusing on the association of body mass index

and total and all-cause mortality, and the role of

a number of confounders, in Asian

populations. Some relationships that can be

explored include the association of exposure

with disease, genome variability with disease

and gene-environment interactions with

molecularly defined disease [43].    
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The GWAS paradigm is a timely reminder

for traditional epidemiologists who often

perform one-at-a-time or few-at-a-time

hypothesis-testing studies. The main hallmarks

of GWAS are the agnostic approach and the

massive dataset derived through large-scale

international collaborations [41]. The agnostic

approach in studying non-genetic factors and

gene-environment interactions may be

debatable. The correlation structure in non-

genetic factors are far more complex and the

need for repeated sampling adds a further

dimension to this high-dimensional data.

However, the setting up of international

consortia of cohort studies is potentially

feasible. Examples of such efforts would

include the Public Population Project in

Genomics (P3G) and the Asia Cohort

Consortium (ACC).

P3G was established in 2007 as a not-for-

profit international consortium of leading
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1. A large number of participants, at least

several hundred thousand, should be

enrolled. This would ensure an adequate

sample size for common disorders.

2. Minority groups should be intentionally

over-sampled to permit meaningful

inferences about these groups and for the

study of health disparities.

3. A broad range of ages should be

represented to provide information on

disorders from infancy to old age, with

over-sampling of age groups as needed.

4. A broad range of genetic backgrounds and

environmental exposures should be

included to provide enough variability to

detect and compare associations and

interactions.

5. Family-based recruitment, including

multiple generations, should be used for at

least part of the cohort to increase the

power of genetic analyses.

6. A broad array of clinical and laboratory

information, not limited to any single

disease, should be collected at the

beginning and at regular intervals

thereafter.

7. Sophisticated dietary, lifestyle and

environmental exposure assessments

should be carried out, using both

questionnaires and biological measures.

8. Biological specimens, including DNA,

plasma and cells, should be collected and

stored.

9. A highly sophisticated data-management

system should be included.

10. Access to study data and biological

materials should be free and open to

allow research into many diseases by

scientists in many sectors.

11. Investigations during the study should not

be limited to hypotheses conceived at its

inception.

12. Comprehensive community engagement

should be a major feature in the design

and implementation of the study.

Potter [38] proposed the concept of ‘The
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