RF-sputtering 및 Sol-gel 방법에 의한 KNN 계 박막 제조 및 강유전/압전 특성에 관한 연구

글 _ 조남규, 황학인, 안창원, 김일원* 전자부품연구원, *울산대학교

1 서론

압전박막 연구는 tilting micro-mirror array, piezoelectric cantilever, optical switch, MEMS 소자뿐만 아니라 health monitoring system, drag delivery system 등과 같 은 정밀 소형 의료기기의 센서와 액추에이터로서 중요성 이 높아지고 있다. 특히 정밀 소형 의료기기에 사용되는 센서 및 액추에이터인 경우 압전체 구성 성분이 사람의 몸으로 녹아 들어갈 경우 생체분자를 파괴시킬 수 있으 므로 높은 압전 특성과 함께 생체적합성(biocompatibility)이 요구된다. 대표적인 압전체 물질인 PZT(Pb(Zr,Ti) O₃)는 마이크로 또는 나노 기기를 포함한 압전 액추에이 터 및 센서로 널리 이용되고 있으나 인체에 해로운 납 (Pb)을 포함하고 있기 때문에 전세계적으로 무연(無鉛; Pb-free) 압전 박막소재 개발이 요구되고 있다. 현재 연 구되고 있는 여러 종류의 무연 압전 소재 중에 K0.5Na0.5 NbO3 (KNN)계 세라믹 소재는 상대적으로 높은 압전 특 성과 온도 안정성, 그리고 생체적합성 때문에 여러 연구 자들에 의해 활발하게 연구되어지고 있다.1.2) 그러나

KNN은 공기 중 수분에 약하며 고온에서 휘발하기 쉬운 K와 Na를 포함하고 있기 때문에 양질의 박막으로 성장시 키기 어렵다. 그러므로 현재까지 KNN 박막의 압전특성 에 관한 연구는 소수의 연구자들에 의해 진행되고 있다. KNN계 박막에 관한 연구는 초기 단계에 있기 때문에 박막의 응용성에 관한 측면보다는 주로 우수한 박막 성 장 조건에 관한 연구, 박막 내부결함을 감소시키기 위한 치환 효과에 대한 연구에 초점이 맞추어지고 있다. 최근 발표된 KNN계 박막의 강유전 및 압전 특성에 관한 연 구 결과를 Table 1에 정리하였다. KNN계 박막은 Pulsed Laser Deposition (PLD), RF-sputtering, Sol-gel 등과 같 은 방법으로 성장시킬 수 있으며, 주로 1µm 이상인 두꺼 운 박막인 경우 양호한 강유전 및 압전 특성을 나타낸다. 그러나 상대적으로 얇은 1µm 이하 KNN계 박막의 경우 열처리 공정 중 K와 Na가 휘발되기 때문에 stoichiometric한 조성비를 가지는 박막을 성장시키기 어렵다. 그러 므로 최근에는 조성 조절이 상대적으로 용이한 sol-gel 방법을 이용하여 성장시킨 KNN계 박막의 압전 특성에 관한 논문이 많이 발표되고 있다. 그러나 아직까지 적절

Table 1. KNN계	박막의	강유전	및	압전	특성
---------------	-----	-----	---	----	----

Composition	Deposition tech.	Substrate	Thickness (μm)	Pr (μC/cm²)	Ec (kV/cm)	Leakage current	Piezoelectric properties	Ref.
KNN	PLD	LaMnO ₃ /LaAlO ₃	1.25				d ₃₃ : 40 pm/V	[3]
KNN	sol-gel	Pt/TiO2/SiO2/Si	0.6	7	70	poor	d ₃₃ : 46 pm/V	[4]
KNN	RF-sputtering	Pt/Ti/SiO ₂ /Si	3.0	20	25	good	e ₃₁ : -5.5 C/m ²	[5]
KNN	sol-gel	Pt/Ti/SiO2/Si	3.5	16.4	42	good	d ₃₃ : 61 pm/V	[6]
0.06LiNbO3-0.94KNN	sol-gel	Pt/Ti/SiO2/Si	0.4	9.7	36.5	poor	d ₃₃ : 192 pm/V	[7]

한 박막 성장 조건이 확립되어 있지 않아서, 발표되고 있 는 KNN계 박막은 PZT계 박막과 비교하여 상대적으로 높은 누설전류 특성을 나타내기 때문에 양호한 강유전 및 압전 특성을 나타내기 어렵다.

본 연구는 RF-sputtering 및 sol-gel 방법으로 양질의 KNN계 박막 제조를 위해 열처리 조건, 휘발성이 강한 K, Na을 보상하기 위한 과잉첨가, ABO₃의 A, B 사이트 에 Li, Ta 치환에 따른 박막의 강유전 및 압전 특성에 관 해 연구하고자 한다.

2. 본론

특 집

2.1. RF-sputtering 방법을 이용한 KNN 박막 성장

RF-sputtering 방법을 이용하여 KNN 박막을 성장시 킬 경우 휘발되기 쉬운 K와 Na를 보상해 주기 위해서 K 와 Na가 과잉 첨가된 세라믹 타겟을 이용하여 박막을 증 착하였다. KNN 박막을 증착하는 동안 가스 분압비는 Ar : O2 = 3 : 1, 기판 온도는 600°C로 고정하였고, RF 입력 전력은 80 W, 증착시간은 120분, 초기 진공도는 2.5× 10⁻⁵ Torr, 증착 진공도는 60 mTorr로 일정하게 유지하 였다. 증착이 끝난 후 산소 부족을 보상하기 위하여 진공 챔버내에서 산소를 600 Torr 주입하여 박막의 온도를 600°C로 유지하면서 30분 동안 선열처리하였다. 증착된 박막의 결정성을 향상시키기 위하여 700°C에서 산소 분

 Fig. 1. K1.5Na1.5NbO3 세라믹 타겟을 사용하여 RF-sputtering 방법으로 증착한 KNN 박막의 강유전특성.

위기로 1시간 동안 후열처리하였다.

K_{0.5}Na_{0.5}NbO₃은 Na와 K 조성비가 1:1인 stoichiometric한 조성에서 우수한 압전 및 강유전 특성을 나타내는 데 EPMA (Electron Probe Micro Analyzer) 측정으로부 터 조성비가 K_{1.5}Na_{1.5}NbO₃인 세라믹 타겟을 이용하여 RF-sputtering 방법으로 증착한 박막의 조성비는 K_{0.49}Na_{0.49}NbO₃이었다.

Fig. 1은 K와 Na가 과잉 첨가된 K_{1.5}NbO₃ 세라믹 타켓을 사용하여 증착한 KNN 박막의 강유전 특성을 나 타낸 것이다. RF-sputtering 방법으로 증착된 KNN 박막 은 포화된 P-E 이력곡선과 C-V 특성을 나타내었다.

Fig. 2는 piezoresponse force microscope (PFM)을 이 용하여 측정한 인가 전압에 따른 KNN 박막의 압전상수 (d₃₃)의 변화를 나타낸 것이다. 압전상수 측정의 신뢰도 를 높이기 위하여 장비의 응답신호를 x-cut 수정 시료를 기준으로 교정하였다. 압전 응답의 이력특성은 -12 V에 서 +12 V의 전압을 2µm×2µm 면적에 인가하고 그 응 답신호를 이용하여 측정하였다. KNN 박막의 압전상수 는 45 pm/V로 다른 무연계 압전 박막과 비교하여 상대 적으로 우수한 값을 나타내었다.

2.2. Sol-gel 방법을 이용한 KNN 박막의 제조

2.2.1. K, Na 과잉첨가 효과

Sol-gel 법을 이용한 박막 제조 방법은 대면적에 균일 한 박막을 얻기 쉽고, 박막의 조성 조절이 용이하다. Fig. 3

Fig. 2. RF-sputtering 방법으로 증착한 KNN 박막의 압전 특성.

은 박막 제조 시 고온에서 휘발되기 쉬운 K와 Na를 0~30 mol% 과잉 첨가하여 sol 용액을 합성하고 스핀 코 팅 방법을 이용하여 Pt/Ti/SiO₂/Si 기판 위에 증착시킨 후 700°C, 산소분위기에서 열처리한 박막의 XRD 패턴을 나타낸 것이다. 과잉 첨가하지 않은 KNN-00 박막인 경 우 K와 Na의 휘발에 의한 이차상이 나타났으나 10 mol% 과잉 첨가된 KNN-10 박막에서는 이차상이 사라지고 20 mol% 과잉 첨가된 KNN-20 박막은 순수한 페로브스카

Fig. 3. K와 Na를 0~30 mol% 과잉 첨가한 sol을 이용하여 제 조한 KNN 박막의 XRD 패턴.

Fig. 4. K와 Na를 0~30 mol% 과잉 첨가한 sol을 이용하여 제 조한 KNN 박막의 P-E 이력곡선.

이트 구조를 갖는 XRD 피크만 나타내었다. 그러므로 순 수한 KNN 결정구조의 박막을 제조하기 위해서는 sol을 합성할 때 K와 Na를 약 20 mol% 과잉 첨가하여야 한다.

Fig. 4는 K와 Na를 0~30 mol% 과잉 첨가하여 코팅된 박막의 P-E 이력곡선이다. XRD 결과로부터 결정성장이 우수한 KNN-20 시료에서 전형적인 P-E 이력곡선을 나 타내었고 PFM을 이용하여 측정한 d₃₃ 값은 약 40 pm/V 로 비교적 높은 값을 나타내었다.

2.2.2. Li 또는 Ta 치환 효과

선행 연구로부터 K와 Na를 과잉 첨가한 세라믹 타겟과 sol 용액을 이용하여 제조된 KNN 박막은 다른 무연계 압전체 박막과 비교하여 비교적 높은 압전계수 (d₃₃ = 40~45 pm/V)를 나타내었다. 그러나 K와 Na를 과잉 첨가 한 KNN 박막인 경우, 인가 전압에 대한 압전 이력 곡선 은 여전히 누설전류 성분을 갖는 포화되지 않는 특선을 나타내었다. 그러므로 K와 Na의 과잉첨가만으로 우수한 압전 특성을 가지는 KNN 박막을 성장하기는 어렵다. 이와 같은 KNN 박막의 문제점은 ABO₃ 구조를 가지는 KNN 조성의 A 또는 B 자리에 Li 또는 Ta를 치환함으 로 강유전 및 압전 특성을 증가시킬 수 있다는 것을 KNN계 세라믹 연구부터 확인할 수 있다.

Fig. 5. K와 Na를 20 mol% 과잉 첨가한 sol을 이용하여 제조한 KNN 박막의 압전 특성.

Fig. 6은 K와 Na를 20 mol% 과잉 첨가한 sol을 이용하 여 증착한 KNN 박막과 K와 Na를 10 mol% 과잉첨가하 고 Li를 0.05 mol 치환한 0.95 K_{0.5}Na_{0.5}NbO₃-0.05LiNbO₃ (0.95KNN-0.05LN) 박막의 P-E 이력곡선을 나타낸 것 이다. KNN 박막은 200 kV/cm 이상의 전기장을 인가하 면 누설전류 특성이 강하게 나타났으나 0.95KNN-0.05LN 박막인 경우, 300 kV/cm 이상의 높은 전기장에서도 이 상적인 강유전 P-E 이력곡선을 나타내었다. KNN에 Li 를 소량 치환하면 결정화 온도가 낮아지고 밀도가 증가 하기 때문에 상대적으로 안정한 박막을 성장 시킬 수 있 다.

특 집

Fig. 7은 600~750°C에서 열처리된 K_{0.5}Na_{0.5}Nb_{0.7}Ta_{0.5}O₃ (KNNT) 박막의 강유전 이력곡선을 나타낸 것이다. 열처 리 온도가 증가함에 따라 잔류분극의 크기는 증가하여 700°C에서 열처리한 박막에서 가장 높은 잔류분극값을 나타내었고, 750°C에서 열처리된 박막은 누설전류 특성 이 포함된 이력곡선 형태를 나타내었다. 그러므로 최상

Fig. 6. (a) KNN (b) 0.95KNN-0.05LN 박막의 P-E 이력곡선.

Fig. 7. 열처리 온도에 따른 K_{0.5}Na_{0.5}Nb_{0.7}Ta_{0.5}O₃ 박막의 강유전 이력곡선.

의 열처리 조건은 700°C 이고, 이 때 박막의 잔류분극의 크기는 10.5 μC/cm²이며, 항전기장의 크기는 45 kV/cm 이었다.

Fig. 8은 KNNT 박막의 열처리 온도에 따른 압전계수 및 700°C에서 열처리된 박막의 압전 이력곡선을 나타낸 것이다. 최적 열처리 조건인 700°C에서 열처리한 박막에 서 가장 큰 53 pm/V 압전계수값과 포화된 이력 곡선을 나타내었다. 이 압전 이력 곡선의 형태 및 압전계수의 크 기는 PZT 박막의 특성과 유사하다.

2.3. KNN계 박막의 압전특성

 Table 2는 본 연구에서 수행하고 있는 KNN계 박막의

 압전특성을 대표적인 무연 압전박막 및 PZT계 박막과

 비교한 것이다. KNN계 박막은 BaTi₁-xZrxO₃, SrBi₂TaO₉,

 Bi_{3.5}Nd_{0.5}Ti₃O₁₂와 같은 대표적인 무연계 압전박막과 비

 교하여 우수한 압전계수를 나타내었으며, 특히 K_{0.5}Na_{0.5}

 Nb_{0.7}Ta_{0.3}O₃ 박막은 1µm 이하인 PZT 박막의 압전계수

Table 2. KNN계 박막의 압전 특성

	Materials	d ₃₃ (pm/V)	ref.
Pb-base	PZT thick films (thickness > 1 μ m)	120~250	[13-15]
	PZT thin film (thickness < 1 µm)	30~65	[16-18]
Pb-free	BaTi _{1-x} Zr _x O ₃	6~9	[19]
	SrBi ₂ TaO ₉	17	[20]
	Bi _{3.5} Nd _{0.5} Ti ₃ O ₁₂	38	[21]
Our works	$K_{0.5}Na_{0.5}NbO_3$ thin film(RF-sputtering, 0.3 $\mu m)$	~45	[8-10]
	$K_{0.5}Na_{0.5}NbO_3$ thin film (sol-gel, 0.25 $\mu m)$	~40	[11]
	$K_{0.5}Na_{0.5}Nb_{0.7}Ta_{0.3}O_3$ thin film (sol-gel, $0.3~\mu m)$	53	

Fig. 8. 열처리 온도에 따른 KNNT 박막의 압전계수.

와 비교하여도 유사한 특성을 가진다. 이와 같은 결과로 부터 KNN계 박막은 PZT계 압전 박막을 대체할 수 있 는 친환경적이고 생체적합성이 우수한 압전소자로 응용 가능성이 높다.

3. 결론

본 연구에서는 기존 PZT와 같은 납(Pb)이 포함된 압 전소재를 대체할 무연 압전 박막 재료 연구를 위해 RFsputtering 및 sol-gel 법을 이용하여 KNN 및 KNNT 계 의 박막에 대한 열처리, 과잉첨가 및 치환 방법에 대한 연구를 수행하였다. K_{0.5}Na_{0.5}NbO₃은 Na와 K 조성비가 1:1인 stoichiometric 한 조성에서 우수한 압전 및 강유전 특성을 나타내는데, RF-sputtering 방법의 경우 K, Na의 휘발 특성으로 이를 보상해 주기 위해 K, Na가 과잉 첨 가된 K1.5Na1.5NbO3인 세라믹 타겟을 제작하여 RF-sputtering 방법으로 증착한 박막은 K0.49Na0.49NbO3의 양호한 조성비 및 우수한 압전특성을 알 수 있었다. Sol-gel법의 경우에도 고온에서 휘발되기 쉬운 K와 Na를 20 mol% 과잉 첨가하여 제작한 박막이 순수한 페로브스카이트 구 조를 가지며, 전형적인 P-E 이력곡선을 나타내었고, d₃₃ 값은 약 40 pm/V로 비교적 높은 값을 나타냄을 알 수 있 었다. 또한 K, Na이 과잉첨가된 KNN에 Li를 소량 치환 하면 결정화 온도가 낮아지고 밀도가 증가하기 때문에 상대적으로 안정한 박막을 성장 시킬 수 있음 알 수 있었 다. 이와 같은 결과로부터 KNN계 박막은 PZT계 압전 박막을 대체할 수 있을 정도로 양호한 압전특성을 가질 수 있음을 확인하여, 향후 친환경적이고 생체적합성이 우수한 압전재료로서 적용 가능성이 높은 것으로 보인다.

감사의 글

본 연구는 지식경제부 소재원천기술개발사업으로 진 행 중이며, 이에 감사 드립니다.

참고 문헌

1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori,

T. Homma, T. Nagaya, and M. Nakamura, *Nature*, **432** 84 (2004).

- K. Nilsson, J. Lidman, K. Ljungström, and C. Kjellman, Biocompatible Material for Implants, WO 99/54266 (1999).
- J-S. Kim, I. R. Hwang, S. H. Hong, J. H. Lee, and B. H. Park, *J. Kor. Phys. Soc.*, 48 1583 (2006).
- 4. Y. Nakashima, W. Sakamoto, H. Maiwa, T. Shimura, and T. Yogo, *Jpn. J. Appl. Phys.*, **46** L311 (2007).
- K. Shibata, F. Oka, A. Ohishi, T. Mishima, and I. Kanno, *Appl. Phys.*, Express 1, 011501 (2008).
- L. Wang, K. Yao, and W. Ren, *Appl. Phys. Lett.*, 93 092903 (2008).
- F. Lai, J-F. Li, Z-X. Zhu, and Y. Xu, J. Appl. Phys., 106 064101 (2009).
- H. J. Lee, C. W. Ahn, S. H. Kang, I. W. Kim, J. S. Lee, and B. M. Jin, *Ferroelectrics*, 335 227 (2006).
- J. S. Lee, H. J. Lee, J. Y. Lee, S. H. Kang, I. W. Kim, C. W. Ahn, and G. S. Chung, *J. Kor. Phys. Soc.*, **52** 1109 (2008).
- H. J. Lee, I. W. Kim, J. S. Kim, C. W. Ahn, and B. H. Park, *Appl. Phys. Lett.*, **94** 092902 (2009).
- C. W. Ahn, S. Y. Lee, H. J. Lee, A. Ullah, J. S. Bae, E. D. Jeong, J. S. Choi, B. H. Park, and I. W. Kim, *J. Phys. D*, (accepted).
- C. W. Ahn, E. D. Jeong, S. Y. Lee, H. J. Lee, S. H. Kang, and I. W. Kim, *Appl. Phys. Lett.*, **93** 212905 (2008).
- S. Muensit, P. Sukwisut, P. Khaenamkeaw, and S. B. Lang, *Appl. Phys.*, A 92 659 (2008).
- S. Osone, K. Brinkman, Y. Shimojo, and T. Iijima, *Thin Solid Films*, **516** 4325 (2008).
- J. Lu, Y. Zhang, T. Ikehara, T. Mihara and R. Meada, IEEE Trans. Ultrason. *Ferroelectr. Freq. Control*, 54 2548 (2007).
- T. A. Berfield, R. J. Ong, D. A. Payne, and N. R. Sottos, *J. Appl. Phys.*, **101** 024102 (2007).
- 17. L. Lian and N. R. Sottos, J. Appl. Phys., 87, 3941 (2000).
- K. Lefki and G. J. M. Dormans, J. Appl. Phys., 76 1764 (1994).
- K. Tanaka, K. Suzuki, K. Nishizawa, T. Miki, and K. Kato, Jpn. J. Appl. Phys., Part 1 44 6885 (2005).
- A. L. holkin, K. G. Brooks, and N. Setter, *Appl. Phys. Lett.*, **71** 2044 (1997).
- H. Maiwa, N. Iizawa, D. Togawa, T. Hayashi, W. Sakamoto, M. Yamada, and S. Hirano, *Appl. Phys. Lett.*, 82 1760 (2003).

특 집

조남규, 황학인, 안창원, 김일원

●● 조남규

- 한양대학교 기계공학과 학사, 한국과학기술
 원 기계공학과 석사, 전북대학교 반도체화
 학공학과 박사
- 1993~1998년 만도기계중앙연구소 센서연구
 실 주임연구원
- 1998-현재 전자부품연구원 융합센서소자연 구센터 책임연구원
- 관심연구분야 : MEMS 센서 및 액추에이터, 압전박막 응용기술

●● 안창원

- 울산대학교 자연과학대학 물리학과 학사,
 석사, 박사
- 2007-2009년 한국기초과학 지원연구원 Post Doc.
- 2009년 현재 한국전자부품연구원 Post Doc.
 관심연구분야 : 무연계 강유전체 세라믹,

박막 소재 연구

황학인

- 한양대학교 공과대학 재료공학 학사, 석사, 박사
- 1984-1993 삼성전자 OA부품개발실 실장
- 1998-2000 스위스연방공과대학(EPFL) Post Doc.
- 1993~현재 융합부품연구본부 본부장
- 관심연구분야 : 압전 박막 소재 및 응용기술

●● 김일원

- 1988년 부산대학교 물리학과 학사, 석사,
 박사
- 1985년-현재 울산대학교 물리학과 교수
- 1994년 Penn. State University 교환교수
- 2004년 부산대학교 유전체 물성 연구소 교환교수
- 관심연구분야 : 무연계 강유전체 세라믹,
 박막 소재 연구

68 || 세라미스트