DOI QR코드

DOI QR Code

Adaptation of SVC to Packet Loss and its Performance Analysis

패킷 손실에 대한 스케일러블 비디오(SVC) 적응기법 및 성능분석

  • Jang, Euy-Doc (School of Electronics, Telecommunication & Computer Engineering, Korea Aerospace University) ;
  • Kim, Jae-Gon (School of Electronics, Telecommunication & Computer Engineering, Korea Aerospace University) ;
  • Thang, Truong Cong (IPTV Technology Research Department, ETRI) ;
  • Kang, Jung-Won (IPTV Technology Research Department, ETRI)
  • 장의덕 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • 김재곤 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • ;
  • 강정원 (한국전자통신연구원 IPTV연구부)
  • Published : 2009.11.30

Abstract

SVC (Scalable Video Coding) is a new video coding standard to provide convergence media service in heterogeneous environments with different networks and diverse terminals through spatial-temporal-quality combined flexible scalabilities. This paper presents the performance analysis on packet loss in the delivery of SVC over IP networks and an efficient adaptation method to packet loss caused by buffer overflow. In particular, SVC with MGS (Medium Grained Scalability) as well as spatial and temporal scalabilities is addressed in the consideration of packet-based adaptation since finer adaptation is possible with a sufficient numbers of quality layers in MGS. The effect on spatio-temporal quality due to the packet loss of SVC with MGS is evaluated. In order to minimize quality degradation resulted by packet loss, the proposed adaptation of MGS based SVC first sets adaptation unit of AU (Access Unit) or GOP corresponding to allowed delay and then selectively discards packets in order of importance in terms of layer dependency. In the experiment, the effects of packet loss on quantitative qualities are analyzed and the effectiveness of the proposed adaptation to packet loss is shown.

SVC(Scalable Video Coding)는 시간-공간-화질의 다양한 스케일러빌러티를 통하여 이종의 망과 다양한 단말 환경에서 컨버전스 미디어 서비스를 제공하기 위한 새로운 비디오 부호화 표준이다. 본 논문에서는 IP 망에서의 패킷 손실(packet loss)로 인한 SVC의 성능을 분석하고 이를 바탕으로 버퍼 넘침(buffer overflow)으로 인한 패킷 손실에 대한 효과적인 SVC 적응(adaptation) 기법을 제시 한다. 특히, IP 망을 통하여 전송되는 SVC는 시간, 공간 스케일러빌리티뿐만 아니라 많은 수의 화질 계층을 포함하여 패킷 기반의 적응에 효과적인 MGS(Medium-Grained Scalability) 기반의 화질 스케일러빌리티를 포함하는 것으로 가정한다. MGS를 포함한 SVC의 패킷 손실로 인한 품질의 영향을 분석한다. 본 논문의 MGS SVC 적응 기법은 접근단위(AU: Access Unit) 또는 GOP 단위로 적응단위를 설정하고 적응단위의 지연이 허용된다는 가정 하에 적응단위내에서 패킷 간의 의존성이 낮은 패킷부터 선택적으로 제거함으로써 패킷 손실로 인한 화질 열화를 최소화하도록 한다. 모의실험을 통하여 패킷 손실로 인한 품질 성능을 정량적으로 분석하고 제안한 적응 기법이 패킷 손실에 효과적으로 대응할 수 있음을 보인다.

Keywords

References

  1. S.-F Chang, A. Vetro, 'Video adaptation: concepts, technologies, and open issues', Proceedings of the IEEE, vol. 93, pp.148-158, Jan. 2005 https://doi.org/10.1109/JPROC.2004.839600
  2. T. Wiegand, G. J. Sullivan, J. Scharz, and M. Wien, 'Joint Draft 11 of SVC Amendment,' Joint Video Team, doc. JVT-X201, Geneva, Switzerland, July 2007
  3. H. Schwarz, D. Marpe, T. Wiegand, 'Overview of the Scalable Video Coding Extension of the H.264/AVC Standard,' IEEE Trans. CSVT, vol. 17, no. 9, pp.1103-1120, Sept. 2007 https://doi.org/10.1109/TCSVT.2007.905532
  4. S. Wenger, Y.-K. Wang, and T. Schierl, 'Transport and signaling of SVC in IP networks,' IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1164-1173, Sep. 20007 https://doi.org/10.1109/TCSVT.2007.905523
  5. Y.-K. Wang, M. M. Hannuksela, S. Pateux, A. Eleftheriadis, and S. Wenger, 'System and transport interface of SVC,' IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1149-1163, Sep. 20007 https://doi.org/10.1109/TCSVT.2007.906827
  6. J. M. Monterio, C. T. Calafate, and M. S. Nunes, 'Evaluation of the H.264 scalable video coding in error prone IP networks', IEEE Trans. Broadcasting, vol. 54, no. 3, pp. 652-659, Sep. 2008 https://doi.org/10.1109/TBC.2008.2001717
  7. T. C. Thang, J. W. Kang, J.-J Yoo, J.-G. Kim, 'Multilayer adaptation for MGS-based SVC bitstream,' in Proc. ACM Multimedia 2008, Oct. 2008 https://doi.org/10.1145/1459359.1459461
  8. T. C. Thang, J.-G. Kim, J. W. Kang, J.-J Yoo, 'SVC adaptation: Standard tools and supporting methods,' Signal Processing: Image Comm., vol. 24, no. 3, pp. 214-228, Oct. 2009 https://doi.org/10.1016/j.image.2008.12.006
  9. A. Elleftheriadis and S. Wenger, 'System and transport Internet of SVC,' IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1149-1163, Sep. 2007 https://doi.org/10.1109/TCSVT.2007.906827
  10. L. Amonou, N. Cammas, S. Kervadec, and S. Pateux, 'Optimized rate-distortion extraction with quality layer in the scalable extension of H.264/AVC,' IEEE Trans. Circuits Syst. Video Technol., vol. 17, no 9, pp. 1186-1193, Sep. 2007 https://doi.org/10.1109/TCSVT.2007.906870
  11. J. Reichel, H. Schwarz, and M. Wien, Joint Scalable Video Model 11 (JSVM 11), Joint Video Team, Doc. JVT-X202, Jul. 2007
  12. Y. Guo, H. Q. Li and Y. K. Wang, 'SVC/AVC loss simulator,' ISO/IEC JTC 1/SC 29/WG 11, JVT-Q069, Oct. 2005

Cited by

  1. Selection of Scalable Video Coding Layer Considering the Required Peak Signal to Noise Ratio and Amount of Received Video Data in Wireless Networks vol.17, pp.2, 2016, https://doi.org/10.9728/dcs.2016.17.2.89