DOI QR코드

DOI QR Code

A Study on the Integration of Information Extraction Technology for Detecting Scientific Core Entities based on Large Resources

대용량 자원 기반 과학기술 핵심개체 탐지를 위한 정보추출기술 통합에 관한 연구

  • 최윤수 (한국과학기술정보연구원 정보기술연구실) ;
  • 정창후 (한국과학기술정보연구원 정보기술연구실) ;
  • 최성필 (한국과학기술정보연구원 정보기술연구실) ;
  • 류범종 (한국과학기술정보연구원 정보기술연구실) ;
  • 김재훈 (한국해양대학교)
  • Published : 2009.12.30

Abstract

Large-scaled information extraction plays an important role in advanced information retrieval as well as question answering and summarization. Information extraction can be defined as a process of converting unstructured documents into formalized, tabular information, which consists of named-entity recognition, terminology extraction, coreference resolution and relation extraction. Since all the elementary technologies have been studied independently so far, it is not trivial to integrate all the necessary processes of information extraction due to the diversity of their input/output formation approaches and operating environments. As a result, it is difficult to handle scientific documents to extract both named-entities and technical terms at once. In this study, we define scientific as a set of 10 types of named entities and technical terminologies in a biomedical domain. in order to automatically extract these entities from scientific documents at once, we develop a framework for scientific core entity extraction which embraces all the pivotal language processors, named-entity recognizer, co-reference resolver and terminology extractor. Each module of the integrated system has been evaluated with various corpus as well as KEEC 2009. The system will be utilized for various information service areas such as information retrieval, question-answering(Q&A), document indexing, dictionary construction, and so on.

대용량 문서에서 정보를 추출하는 작업은 정보검색 분야 뿐 아니라 질의응답과 요약분야에서 매우 유용하다. 정보추출은 비정형 데이터로부터 정형화된 정보를 자동으로 추출하는 작업으로써, 개체명 인식, 전문용어 인식, 대용어 참조해소, 관계 추출 작업 등으로 구성된다. 이들 각각의 기술들은 지금까지 독립적으로 연구되어왔기 때문에, 구조적으로 상이한 입출력 방식을 가지며, 하부모듈인 언어처리 엔진들은 특성에 따라 개발 환경이 매우 다양하여 통합 활용이 어렵다. 과학기술문헌의 경우 개체명과 전문용어가 혼재되어 있는 형태로 구성된 문서가 많으므로, 기존의 연구결과를 이용하여 접근한다면 결과물 통합과정의 불편함과 처리속도에 많은 제약이 따른다. 본 연구에서는 생의학 분야 과학기술 문헌을 분석하여 전문용어 및 개체명 등을 통합 추출할 수 있는 기반 프레임워크를 개발한다. 이를 위하여, 문장자동분리, 품사태깅, 기저구인식 등과 같은 기반 언어 분석 모듈은 물론 이를 활용한 개체명 인식기, 전문용어 인식기를 개발하고 이들을 하나의 플랫폼으로 통합한 과학기술 핵심개체 인식 체계를 제안한다. 전체 플랫폼의 성능을 체계적으로 평가하기 위해서, KEEC 2009를 비롯한 다양한 말뭉치를 기반으로 세부 요수 모듈에 대한 성능 평가를 수행하였으며, 비교적 높은 수준의 성능을 확보하였다. 본 논문에서 개발된 핵심개체자동인식 플랫폼은 정보검색, 질의응답, 문서색인, 사전구축 등 다양한 정보서비스 분야에 활용될 수 있다.

Keywords

References

  1. 국립국어원. 2007. 전문용어 연구. 경기: 태학사.
  2. 오종훈, 최기선. 2006. 기계학습에 기반한 생의학 분야 전문용어의 자동인식. 정보과학회논문지: 소프트웨어 및 응용, 33(8): 718-729.
  3. Ananiadou, S. and Nenadic, G. 2006. “Automatic terminology management in biomedicine.” Text Mining for Biology and Biomedicine, 67-97.
  4. Black, W. J. and Vasilakopoulos, A. 2002. “Language-Independent Named Entity Classification by Modified Transformation-Based Learning and by Decision Tree Induction.” Proceedings of CoNLL, 2002: 159-162.
  5. Carbonell, J., Brown, R. 1988. “Anaphora resolution: a multi-strategy approach.” Proceedings of COLING, 1998 : 96-101.
  6. Carreras, X., Marques, L. and Padro, L. 2002. “Named Entity Extraction using AdaBoost.” Proceedings of CoNLL 2002: 167-170.
  7. Chang, J. T., Schutze, H. and Altman, R. B. 2004, “GAPSCORE: Finding gene and protein names one word at a time.” Bioinformatics, 20(2): 216–225.
  8. Collins, M. 2002. “Ranking Algorithms for Named-Entity Extraction: Boosting and the Voted Perceptron.” Proceedings of ACL, 2002.
  9. Denis, P., Baldridge, J. 2009. “A ranking approach to pronoun resolution.” Proceedings of IJCAI-07, 1588-1593.
  10. Elsner, M. and Charniak, E. 2007. A Generative Discourse-New Model for Text Coherence. Tech Report CS-07-04.
  11. Grosz, B. J., Joshi, A. K. and Weinstein, S. 1995. “Centering: A Framework for Modeling the Local Coherence of Discourse.” Computational Linguistics, 12(2): 203-225.
  12. Kilicaslan, Y., Guner, E., Yildirim, S. 2009. “Learning-based pronoun resolution for Turkish with a comparative evaluation.” Computer Speech Language, 23(3): 311-331. https://doi.org/10.1016/j.csl.2008.09.001
  13. Lafferty, J., McCallum, A. and Pereira, F. 2001. “Conditional random fields: Probabilistic models for segmenting and labeling sequence data.” Proceedings of International Conference on Machine Learning, 282-289.
  14. Lappin, S., Leass, H. 1994. “An algorithm for pronominal anaphora resolution.” Computational Linguistics, 20(4): 535-561.
  15. LDC. 2008. ACE(Automatic Content Extraction) English Annotation Guidelines for Entities, ver 6.6, Linguistic Data Consortium.
  16. Marcus, M. P., Santorini, B. and Marcinkiewicz, M. A. 2004. “Building a large annotated corpus of English: The Penn Treebank.” Computational Linguistics, 19(2): 313-330.
  17. Nguyen, N., Kim, J., Tsujii, J. 2008. “Challenges in pronoun resolution system for biomedical text.” Proceedings of LREC, 2008: 2408-2412.
  18. Sasaki, Y., Montemagni, S., Pezik, P., Rebholz-Schuhmann, D., McNaught, J. and Ananiadou, S. 2008. “Bio-Lexicon: A lexical resource for the biology domain.” Proceedings of the Third International Symposium on Semantic Mining in Biomedicine.
  19. Soon, W., Ng, H., Lim, D. 2003. “A machine learning approach to coreference resolution of noun phrases.” Computational Linguistics, 27(4): 521-544. https://doi.org/10.1162/089120101753342653
  20. Tanabe, L. and Wilbur, W. J. 2002. “Tagging gene and protein names in biomedical text.” Bioinformatics, 18(8): 1124-1132. https://doi.org/10.1093/bioinformatics/18.8.1124
  21. The Gene Ontology Consortium. 2008. “The Gene Ontology project in 2008.” Nucleic Acids Research, 36(Database issue): D440-D444. https://doi.org/10.1093/nar/gkm883
  22. Tjong Kim Sang, E. F. 2002. “Memory -Based Shallow Parsing.” Journal of Machine Learning Research, 2(March): 559-594. https://doi.org/10.1162/153244302320884542
  23. Watanabe, Y., Asahara, M. and Matsumoto, Y. 2007. “A Graph-based Approach to Named Entity Categorization in Wikipedia using Conditional Random Fields.” Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 649–657.
  24. Weischedel, R., Pradhan, S. Ramshaw, L., Khleif, T., Palmer, M., Xue, N., Marcus, M. Taylor, A. Greenberg, C., Hovy, E., Belvin, R. and Hoston, A. 2007. OntoNotes Release 2.0, BBN Technologies.
  25. Yang, X., Su, J. and Tan, C. L. 2008. “A twin-candidate model for learning - ased anaphora resolution.” Computational Linguistics, 34(3): 327-356. https://doi.org/10.1162/coli.2008.07-004-R2-06-57
  26. Zhang, J., Shen, D., Zhou, G., Su, J. and Tan, C. L. 2004. “Enhancing HMM -based biomedical named entity recognition by studying special phenomena.” Journal of Biomedical Informatics, 37(6): 411-422. https://doi.org/10.1016/j.jbi.2004.08.005
  27. Zhou, G., Zhang, J., Su, J. et al. 2004. “Recognizing names in biomedical texts: A machine learning approach.” Bioinformatics, 20(7): 1178-1190. https://doi.org/10.1093/bioinformatics/bth060

Cited by

  1. Feature Generation of Dictionary for Named-Entity Recognition based on Machine Learning vol.41, pp.2, 2010, https://doi.org/10.1633/JIM.2010.41.2.031