실시간 멀티미디어 스트리밍을 위한 계층 통합 패킷 스케줄링 기법

Cross-layer Design of Packet Scheduling for Real-Time Multimedia Streaming

  • 홍성우 (한양대학교 전자통신컴퓨터학과 분산 멀티미디어 연구실) ;
  • 원유집 (한양대학교 전자통신컴퓨터학과 분산 멀티미디어 연구실)
  • 발행 : 2009.11.30

초록

멀티미디어의 프레임들은 QoS에 각각 다른 정도의 영향을 미치기 때문에, 패킷 손실을 줄이는 것이 항상 QoS를 향상시키는 것은 아니다. 사용자가 느끼는 QoS를 극대화하기 위해 본 논문은 중요성 기반 패킷 스케줄링을 제안한다. 중요성 기반 패킷 스케줄링 기법은 패킷 스케줄링의 두 가지 근본적인 문제를 해결한다. 하나는 "무엇을 보내는 가"이고 다른 하나는 "언제 보내는 가" 이다. 이용 가능한 대역폭이 계속 변화할 때, 대역폭에 적응하기 위해 모든 패킷을 보낼 수 없을 경우에는 일부의 패킷을 선택해서 보낼 수밖에 없다. 이를 위해 패킷 Significance를 제안하는데, 패킷 Significance는 효과적으로 프레임 상관관계를 파악하고 프레임의 중요도를 정량화한다. 그리디(greedy) 접근 기법이 패킷 선택 문제에 사용되었고, 패킷 Significance가 전송 스케줄링에 고려되었다. 널리 공개된 MPEG-4 비디오 클립이 실험에 사용되었으며, 시뮬레이션 소프트웨어에 디코딩 엔진이 삽입되었고, 성능 평가를 위해 PSNR을 측정하였다. 크기 기반 패킷 스케줄링 기법 및 비트 레이트 기반 최선(bit-rate based best-effort) 스케줄링 기법과 성능을 비교 분석하였다. 제안하는 기법이 더 중요한 패킷에 차별화 된 보호기능을 성공적으로 부여하며, QoS를 크게 향상시키는 것을 확인할 수 있었다.

Improving packet loss does not necessarily coincide with the improvement in user perceivable QoS because each frame carries different degree of importance. We propose Significance-aware packet scheduling (SAPS) to maximize user perceivable QoS. SAPS carries out two fundamental issues of packet scheduling: "What to transmit" and "When to transmit?" To adapt to the available bandwidth, it is necessarily to transmit the subset of the data packets if the entire set of packets can not be transmitted. "Packet Significance" quantifies the importance of the frame by elaborately incorporating frames' dependency. Greedy approach is used in selecting packets and transmission schedule is determined based on the Packet Significance. The proposed scheme is tested using publicly available MPEG-4 video clips. Decoding engine is embedded in the simulation software and user perceivable QoS is exposeed in termstermiSNR. Throughout the simulation based experiment, the performance of the proposed scheme is compared two other schemes: Size-based packet scheduling and Bit-rate based best effort packet scheduling. SAPS successfully incorporates the semantics of a packet and improves user perceivable QoS significantly. It successfully provides unequal protection to more important packets.

키워드

참고문헌

  1. J. Zipper, C. Stoger, G. Hueber, R. Vazny, W. Schelmbauer, B. Adler, and R. Hagelauer, 'A single-chip dual-band cdma2000 transceiver in 0.13 muhboxm cmos,' IEEE Journal of Solid-State Circuits, 42(12), pp.2785-2794, Dec., 2007 https://doi.org/10.1109/JSSC.2007.908750
  2. W. Li, 'Overview of fine granularity scalability in MPEG-4 video standard,' IEEE Trans. on Circuits and Systems for Video Technology, 11(3), pp. 301-317, Mar., 2001 https://doi.org/10.1109/76.911157
  3. Y. Won, J. Jung, Y. Jun, I. Chang, and S. Hong, 'Qos weighted scheduling: Real-time streaming of multi-resolution video,' in Proc. of Graphics and Visualization in Engineering (GVE 2007), Clearwater, Florida, USA, Jan., 2007
  4. C. M. Aras, J. Kurose, D. S. Reeves, and H. Schulzrinne, 'Real-time communication in packet-switched networks.' in Proc. of the IEEE, 82, pp.122-139, Jan., 1994 https://doi.org/10.1109/5.259431
  5. J. Wu, J. Cai, and C. Chen, 'Single-pass rate-smoothed video encoding with quality constraint,' IEEE Trans. on Signal Processing Letters, 14(10), pp.715-718, Oct., 2007 https://doi.org/10.1109/LSP.2007.896376
  6. J. Dubois, 'Burstiness reduction of a doubly stochastic ar-modeled uniform activity vbr video,' Trans. on WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, 23, pp.454-458, Aug., 2007
  7. A. Argyriou, 'Cross-layer error control for multimedia streaming in wireless/wireline packet networks,'. IEEE Trans. on Multimedia, 10(6), pp.1121-1127, Sept., 2008 https://doi.org/10.1109/TMM.2008.2001371
  8. H. Mansour, P. Nasiopoulos, and V. Krishnamurthy, 'Real-time joint rate and protection allocation for multi-user scalable video streaming,' IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1-5, NY, USA, Sept., 2008 https://doi.org/10.1109/PIMRC.2008.4699569
  9. P. Chou and Z. Miao, 'Rate-distortion optimized streaming of packetized media,' IEEE Trans. on Multimedia, 8(2), pp.390-404, Apr., 2006 https://doi.org/10.1109/TMM.2005.864313
  10. J. Chakareski and P. Frossard, 'Distributed packet scheduling of multiple video streams over shared communication resources,' in proc. on Multimedia Signal Processing, IEEE, pp.1-4, Shanghai, China, Oct., 2005 https://doi.org/10.1109/MMSP.2005.248602
  11. S. S. Lam, S. Chow, and D. K. Yau, 'An algorithm for lossless smoothing of mpeg vide,' Trans. on SIGCOMM Comput. Commun. Rev. 2(4), pp.281-293, 1994 https://doi.org/10.1145/190809.190340
  12. J. D. Salehi, Z. Zhang, J. Kurose, and D. Towsley, 'Supporting stored video: Reducing rate variability and end-to-end resource requirements through optimal smoothing,' IEEE Trans. on Networking, 6(4), pp.397-410, Aug., 1998 https://doi.org/10.1109/90.720873
  13. Y. Won and B. Shim, 'Empirical study of VBR traffic smoothing in wireless environment,' In Proc. of the second international workshop on Innovative Internet Computing Systems, 2346, pp.193-204. Springer, June, 2002 https://doi.org/10.1007/3-540-48080-3
  14. MEncoder. Program for encoding video+audio [online] available: http://www.mplayerhq.hu/
  15. P. Chou and Z. Miao, 'Rate-distortion optimized streaming of packetized media,' IEEE Trans. on Multimedia, 8(2), pp.390-404, Apr. 2006 https://doi.org/10.1109/TMM.2005.864313
  16. K. Mayer-Patel, L. Le, and G. Carle, 'An mpeg performance model and its application to adaptive forward error correction,' In Proc. of the tenth ACM international conference on Multimedia, pp. 1-10, NY, USA, 2002
  17. I. Politis, M. Tsagkaropoulos, T. Pliakas, and T. Dagiuklas, 'Distortion optimized packet scheduling and prioritization of multiple video streams over 802.11e networks,' Advances in Multimedia, 2007(1), pp.1-11, April, 2007 https://doi.org/10.1155/2007/76846
  18. 원유집, 전영균, 박동주, 정제창, '다계층 멀티미디어 스트리밍을 위한 의미기반 패킷 스케줄링,' 정보과학회논문지 : 시스템 및 이론, 제44권 제10호, 722-733쪽 2006년 10월
  19. R. Rejaie, M. Handley, and D. Estrin, 'RAP: An end-to-end rate-based congestion control mechanism for realtime streams in the internet,' In Proc. of IEEE INFOCOM, 3, pp.1337-1345, Mar. 1999 https://doi.org/10.1109/INFCOM.1999.752152
  20. The network simulator - ns-2 Information Sciences Institute [online] available: http://nsnam.isi.edu/nsnam/index.php/user information
  21. Video traces file [online] available: http://www.dmclab.hanyang.ac.kr/data/mpeg2data/vid eo_traces.htm
  22. Y. Chen, Y. Hu, O. Au, H. Li, and C. Chen, 'Video error concealment using spatio-temporal boundary matching and partial differential equation,' IEEE Trans. on Multimedia, 10(1), pp. 2-15, Jan., 2008 https://doi.org/10.1109/TMM.2007.911223
  23. J. Mitchell, W. Pennebaker, C. Fogg, and D. LeGall, 'MPEG video compression standard,' Champman and Hall, 1996
  24. M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, 'H.264/avc baseline profile decoder complexity analysis,' IEEE Trans. on circuits and systems for video technology, 13(7), pp.704-716, 2003 https://doi.org/10.1109/TCSVT.2003.814967
  25. Sungwoo Hong, Youjip Won, 'SAPS: Significance-Aware Packet Scheduling for Real-time Streaming of Layer Encoded Video,' The IEEE International Workshop on Data Semantics for Multimedia Systems and Applications (DSMSA2008), Berkeley, California, USA Dec., 2008 https://doi.org/10.1109/ISM.2008.76
  26. S. Giordano, M. Pagano, R. Pannocchia, and F. Russa., 'A new call admission control scheme based on the self similarnature of multimedia traffic,' In Proc. of IEEE Communications, Conference Record, Converging Technologies for Tomorrow's Applications, No.3, pp.1612-1618, Dallas, TX, USA, June, 1996 https://doi.org/10.1109/ICC.1996.535189