DOI QR코드

DOI QR Code

INVESTIGATION OF WAVES PROPAGATING IN ISOTHERMAL PLASMA AROUND DE SITTER BLACK HOLE

  • Hasan, M. Khayrul (Department of Mathematics, Shahjalal University of Science and Technology) ;
  • Ali, M. Hossain (Department of Applied Mathematics, University of Rajshahi)
  • Published : 2009.10.31

Abstract

We investigate the wave properties for isothermal plasma state around to the de Sitter black hole's horizon using 3+1 split of spacetime. The corresponding Fourier analyzed perturbed perfect GRMHD equations are used to obtain the complex dispersion relations. We obtain the real values of the wave number k, from these relations, which are used to evaluate the quantities like phase and group velocities etc. These have been analyzed graphically in the neighborhood of the horizon.

Keywords

References

  1. Aharony, O., Gubser, S., Maldacena, J., Ooguri, H., & Oz, Y., 1999, Large N field theories, string theory and gravity, PhR, 323, 183 https://doi.org/10.1016/S0370-1573(99)00083-6
  2. Anile, A. M., 1989, Relativistic Fluids and Magneto-Fluids with Applications in Astrophysics and Plasma Physics, Cambridge University Press, London
  3. Ant$\acute{o}$n, L., Zanotti, O., Miralles, J. A., Mart$\acute{i}$, J. A., Ib$\acute{a}$$\tilde{n}$ez, J., Font, J. A., & Pons, J. A., 2006, Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach, ApJ, 637, 296 https://doi.org/10.1086/498238
  4. Arnowitt, R., Deser, S., & Misner, C. W., 1962, In: L. Witten (ed.) Gravitation, An Introduction to Current Research. Wiley, New York
  5. Bahcall, N., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J., 1999, The Cosmic Triangle: Revealing the State of the Universe, Science, 284, 1481 https://doi.org/10.1126/science.284.5419.1481
  6. Bousso, R., Maloney, A., & Strominger, A., 2002, Conformal vacua and entropy in de Sitter space, PhRvD, 65, 104039 https://doi.org/10.1103/PhysRevD.65.104039
  7. Buzzi, V., Hines, K. C., & Treumann, R. A., 1995, Relativistic two fluid plasmas in the vicinity of a Schwarzschild black hole-Local approximation. II, PhRvD, 51, 6677 https://doi.org/10.1103/PhysRevD.51.6677
  8. Buzzi, V., Hines, K. C., & Treumann, R. A., 1995, Relativistic two fluid plasmas in the vicinity of a Schwarzschild black hole-Local approximation. I, PhRvD, 51, 6663 https://doi.org/10.1103/PhysRevD.51.6663
  9. Dettman, C. P., Frankel N. E., & Kowalenko, V., 1993, Plasma electrodynamics in the expanding Universe, PhRvD, 48, 5655 https://doi.org/10.1103/PhysRevD.48.5655
  10. Evans, C. R., Smarr, L. L., & Wilson, J. R., 1986, Norman, M., Winkler, K. H. (eds.) Astrophysical Radiation Hydrodynamics. Reidel, Dordrecht
  11. Gubser, S., Klebanov, I., & Polyakov, A., 1998, Gauge theory correlators from non-critical string theory, PhLB, 428, 105 https://doi.org/10.1016/S0370-2693(98)00377-3
  12. Hawking, S., 1972, Black holes in general relativity,CMaPh, 25, 152 https://doi.org/10.1007/BF01877517
  13. Holcom, K. A., 1990, Linear analysis of postrecombination magnetized plasmas, ApJ, 362, 381 https://doi.org/10.1086/169275
  14. Holcomb, K. A. & Tajima, T., 1989, General-relativistic plasma physics in the early Universe, PhRvD, 40, 3809 https://doi.org/10.1103/PhysRevD.40.3809
  15. Hull, C. M., 1998, Timelike T-duality, de Sitter space, large N gauge theories and topological field theory, JHEP, 07, 021
  16. Israel, W., 1968, Event horizons in static electrovac space-times, CMaPh, 8, 245 https://doi.org/10.1007/BF01645859
  17. Israel, W., 1967, Event Horizons in Static Vacuum Space-Times, Phys. Rev., 164, 1776 https://doi.org/10.1103/PhysRev.164.1776
  18. Khanna, R., 1998, On the magnetohydrodynamic description of a two-component plasma in the Kerr metric, MNRAS, 294, 673 https://doi.org/10.1046/j.1365-8711.1998.01234.x
  19. Klemm, D., 2002, Some aspects of the de Sitter/CFT correspondence, NuPhB, 625, 295 https://doi.org/10.1016/S0550-3213(02)00007-X
  20. Komissarov, S. S. 2002, Time-dependent, force-free, degenerate electrodynamics, MNRAS, 336, 759 https://doi.org/10.1046/j.1365-8711.2002.05313.x
  21. Macdonald, D. A. & Thorne, K. S., 1982, Black-hole electrodynamics - an absolute-space/universal-time formulation, MNRAS, 198, 345 https://doi.org/10.1093/mnras/198.2.345
  22. Mackay, T. G. , Lakhtakia, A., & Setiawan, S., 2005, Non-classical interference between independent sources, 7, 171
  23. Maldacena, J., 1998, The Large N Limit of Superconformal Field Theories and Supergravity, AdTMP, 2, 231
  24. Medved, A. J., 2002, Radiation via tunneling from a de Sitter cosmological horizon, PhRvD, 66, 124009 https://doi.org/10.1103/PhysRevD.66.124009
  25. Ostriker, J. P. & Steinhardt, P. J., 1995, The observational case for a low-density Universe with a non-zero cosmological constant, 337, 600 https://doi.org/10.1038/337600a0
  26. Parikh, M., 2002, New coordinates for de Sitter space and de Sitter radiation, PhLB, 546, 189
  27. Park, Mu-In, 1998, Statistical entropy of three-dimensional Kerr-de Sitter space, PhLB, 440, 275 https://doi.org/10.1016/S0370-2693(98)01119-8
  28. Park, Mu-In, 1999, Symmetry algebras in Chern-Simons theories with boundary: canonical approach, NuPhB, 544, 377 https://doi.org/10.1016/S0550-3213(99)00031-0
  29. Perlmutter, S. , et al., 1999, Measurements of Omega and Lambda from 42 High-Redshift Supernovae, ApJ, 517,565 https://doi.org/10.1086/307221
  30. Price, R. H. & Thorne, K. S., 1986, Membrane viewpoint on black holes: Properties and evolution of the stretched horizon, PhRvD, 33, 915 https://doi.org/10.1103/PhysRevD.33.915
  31. Rahman, M. A. & Ali, M. H., 2008, Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space, arxiv: gr-qc/0806.2740 https://doi.org/10.1007/s10714-009-0891-x
  32. Reiss, A. G., et al., 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ, 116, 1009 https://doi.org/10.1086/300499
  33. Robinson,D., 1974, Classification of black holes with electromagnetic fields, PhRvD, 10, 458 https://doi.org/10.1103/PhysRevD.10.458
  34. Sakai, J. & Kawata, T., 1980, Waves in an ultra-relativistic electron-positron plasma, 49, 747 https://doi.org/10.1143/JPSJ.49.747
  35. Sharif, M. & Sheikh, U., 2007, Effects of Schwarzschild black hole horizon on isothermal plasma wave dispersion, 39, 2095 https://doi.org/10.1007/s10714-007-0505-4
  36. Strominger, A., 2001, Inflation and the dS/CFT Correspondence, JHEP, 11, 049 https://doi.org/10.1088/1126-6708/2001/11/049
  37. Strominger, A., 2001, The dS/CFT correspondence, JHEP, 10, 034 https://doi.org/10.1088/1126-6708/2001/10/034
  38. Thorne, K. S. , Price, R. H., & Macdonald, D. A., 1986, Black Holes: The Membrane Paradigm, Yale University Press, New Haven (1986)
  39. Thorne, K. S., & Macdonald, D. A., 1982, Electrodynamics in Curved Spacetime - 3+1 Formulation, 197, 339
  40. Witten, E., 1998, Adv. Theor. Math. Phys., 2, 253 https://doi.org/10.4310/ATMP.1998.v2.n2.a2
  41. Witten, E., 2001, Quantum gravity in de Sitter space, arXiv:hep-th/0106109
  42. Zhang, X.-H., 1989, 3+1 formulation of general-relativistic perfect magnetohydrodynamics, PhRvD, 39, 2933 https://doi.org/10.1103/PhysRevD.39.2933
  43. Zhang, X.-H., 1989, Interactions of magnetohydrodynamic waves with gravitomagnetic fields, and their possible roles in black-hole magnetospheres, PhRvD, 40, 3858 https://doi.org/10.1103/PhysRevD.40.3858

Cited by

  1. Hot plasma waves in Veselago medium around Reissner-Nordström black hole vol.348, pp.1, 2013, https://doi.org/10.1007/s10509-013-1538-7