References
- Adams A, De Kimpe N. Formation of pyrazines from ascorbic acid and amino acids under dry-roasting conditions. Food Chem. 115: 1417-1423 (2009) https://doi.org/10.1016/j.foodchem.2009.01.071
- Davidek J, Velisek J, Zelinkova Z, Kubelka V. Pyrazine in the reaction of L-dehydroascorbic acid with ammonia and glycine. J. Food Sci. 42: 277-278 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb01272.x
- Davies CGA, Wedzicha BL. Ascorbic acid browning: The incorporation of C1 from ascorbic acid into melanoidins. Food Chem. 49: 165-167 (1994) https://doi.org/10.1016/0308-8146(94)90153-8
- Fan X, Reneker LW, Obrenovich ME, Strauch C, Cheng R, Jarvis SM. Vitamin C mediates chemical aging of lens crystallins by the Maillard reaction in a humanized mouse model. P. Natl. Acad. Sci. USA 103: 16912-16917 (2006) https://doi.org/10.1073/pnas.0605101103
- Hartmann GJ, Scheide JD, Ho CT. Effect of water activity on the major volatiles produced in a model system approximating cooked meat. J. Food Sci. 49: 607-613 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb12480.x
- Kennedy JF, Rivera ZS, Warner FP, Lioyd LL, Jumel K. Analysis of carbohydrates and amino acids in aqueous solutions of L-ascorbic acid and correlation of their role in nonenzymic browning of vitamin C. J. Micronutr. Anal. 6: 1-17 (1989)
- Loscher J, Kroh L, Westphal G, Vogel J. L-Ascorbic acid - a carbonyl component of nonenzymic browning reactions. Part 2. Amino-carbonyl reactions of L-ascorbic acid. Z. Lebensm. Unters. Fors. 192: 323-327 (1991) https://doi.org/10.1007/BF01202762
- Mikova K, Davidek J. Formation of alkylimidazoles in a system containing L-ascorbic acid and ammonia. Nahrung 19: 155-161 (1975) https://doi.org/10.1002/food.19750190207
- Obretenov C, Demyttenaere J, Abbaspour Tehrani K, Adams A, Kersiene M, De Kimpe N. Flavor release in the presence of melanoidins prepared from L-(+)-ascorbic acid and amino acids. J. Agr. Food Chem. 50: 4244-4250 (2002) https://doi.org/10.1021/jf0200366
- Rogacheva S, Kuncheva M, Panchev I, Obretenov C. L-Ascorbic acid in nonenzymatic reactions. Reaction with glycine. Z. Lebensm. Unters. Fors. 200: 52-58 (1995) https://doi.org/10.1007/BF01192908
-
Rogacheva S, Verhe R, Obretenov C. Aroma compounds formation in the interaction of L-ascorbic acid with
$\alpha$ -amino acids. pp. 250-253. In: Flavour Science: Recent Developments. Taylor A, Mottram D (eds). The Royal Society of Chemistry, Cambridge, UK (1996) - Rogacheva S, Kuntcheva M, Panchev I, Obretenov C. Melanoidin formation in L-ascorbic acid-amino acids interaction. A comparative study. Nahrung 43: 105-108 (1999) https://doi.org/10.1002/(SICI)1521-3803(19990301)43:2<105::AID-FOOD105>3.0.CO;2-#
- Seck S, Crouzet J. Formation of volatile compounds in sugarphenylalanine and ascorbic acid-phenylalanine model systems during heat treatment. J. Food Sci. 46: 790-793 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb15349.x
- Yano M, Hayashi T, Namiki M. Formation of free radical products by the reaction of dehydroascorbic acid with amino acids. J. Agr. Food Chem. 24: 815-821 (1976) https://doi.org/10.1021/jf60206a046
- Yin DZ, Brunk UT. Oxidized ascorbic acid and reaction products between ascorbic and amino acids might constitute part of age pigments. Mech. Ageing Dev. 61: 99-112 (1991) https://doi.org/10.1016/0047-6374(91)90009-O
- Yu AN, Zhang AD. The effect of pH on the formation of aroma compounds produced by heating a model system containing Lascorbic acid with L-threonine/ L-serine. Food Chem. 119: 214-219 (2010) https://doi.org/10.1016/j.foodchem.2009.06.026
- Jousse F, Jongen T, Agterof W, Russell S, Braat P. Simplified kinetic scheme of flavor formation by the Maillard reaction. J. Food Sci. 67: 2534-2542 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb08772.x
- Ellis GP. The Maillard reaction. pp. 63-134. In: Advances in Carbohydrate Chemistry. Wolfrom ML (ed). Academic Press, New York, NY, USA (1959)
- Beal AD, Mottram DS. Compounds contributing to the characteristic aroma of malted barley. J. Agr. Food Chem. 42: 2880-2884 (1994) https://doi.org/10.1021/jf00048a043
- Ho CW, Wan Aida WM, Maskat MY, Osman H. Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar. Food Chem. 102: 1156-1162 (2007) https://doi.org/10.1016/j.foodchem.2006.07.004
- Solina M, Baumgartner P, Johnson RL, Whitfield FB. Volatile aroma components of soy protein isolate and acid-hydrolysed vegetable protein. Food Chem. 90: 861-873 (2005) https://doi.org/10.1016/j.foodchem.2004.06.005
- Moon SY, Cliv MA, Li-Chan ECY. Odour-active components of simulated beef Xavour analysed by solid phase microextraction and gas chromatography–ass spectrometry and olfactometry. Food Res. Int. 39: 294-308 (2006) https://doi.org/10.1016/j.foodres.2005.08.002
- Vernin G, Chakib S, Rogacheva S, Obretenov T, Parkanyi C. Thermal decomposition of ascorbic acid. Carbohyd. Res. 305: 1-15 (1998) https://doi.org/10.1016/S0008-6215(97)00234-6
- Koehler PE, Odell GV. Factors affecting the formation of pyrazine compounds in sugar-amine reactions. J. Agr. Food Chem. 18: 895-898 (1970) https://doi.org/10.1021/jf60171a041
- Maga JA. Pyrazine update. Food Rev. Int. 8: 479-558 (1992) https://doi.org/10.1080/87559129209540951
- Wang PS, Odell GV. Formation of pyrazines from thermal treatment of some amino-hydroxy compounds. J. Agr. Food Chem. 21: 868-870 (1973) https://doi.org/10.1021/jf60189a032
- Shibamoto T, Akiyama T, Sakaguchi M, Enomoto Y, Masuda H. A study of pyrazine formation. J. Agr. Food Chem. 27: 1027-1031 (1979) https://doi.org/10.1021/jf60225a051
- Amrani-Hemaimi M, Cerny C, Fay LB. Mechanisms of formation of alkylpyrazines in the maillard reaction. J. Agr. Food Chem. 43: 2818-2822 (1995) https://doi.org/10.1021/jf00059a009
- Shephard AB, Nichols SC, Braithwaite A. Moisture induced solid phase degradation of L-ascorbic acid. Part 3. Structural characterisation of the degradation products. Talanta 48: 607-622 (1999) https://doi.org/10.1016/S0039-9140(98)00278-1