References
- Tiat VHK, Sebastian P, Nadeau JP. Multicriteria-oriented preliminary design of a flash evaporation process for cooling in the wine-making process. J. Food Eng. 85: 491-508 (2008) https://doi.org/10.1016/j.jfoodeng.2007.08.015
- Fang F, Li J-M, Zhang P, Tang K, Wang W, Pan Q-H, Huang W-D. Effects of grape variety, harvest date, fermentation vessel, and wine ageing on flavonoid concentration in red wines. Food Res. Int. 41: 53-60 (2008) https://doi.org/10.1016/j.foodres.2007.09.004
- Versari A, Boulton RB, Parpinello GP. A comparison of analytical methods for measuring the color components of red wines. Food Chem. 106: 397-402 (2008) https://doi.org/10.1016/j.foodchem.2007.05.073
- Ando A, Suzuki C, Shima J. Survival of genetically modified and self-cloned strains of commercial baker's yeast in stimulated natural environments: Environment at risk assessment. Appl. Environ. Microb. 71: 7075-7082 (2005) https://doi.org/10.1128/AEM.71.11.7075-7082.2005
- Ponciano JM, Vandercasteele FPJ, Hess TF, Fomey LJ, Crawford RL, Joyce P. Use of strochastic models to assess the effect of environmental factors on microbial growth. Appl. Environ. Microb. 71: 2355-2364 (2005) https://doi.org/10.1128/AEM.71.5.2355-2364.2005
- Steve SH, Lin T, Duff SJB. Optimization of spent sulfite liquor fermentation. Enzyme Microb. Tech. 42: 259-264 (2008) https://doi.org/10.1016/j.enzmictec.2007.10.004
- Guzzo J, Jobin MP, Divies C. Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation. FEMS Microbiol. Lett. 160: 43-47 (1998) https://doi.org/10.1111/j.1574-6968.1998.tb12888.x
- Yuasa N, Nakagawa Y, Hayakawa M, Iimura Y. Distribution of the sulfite resistance gene SSUI-R and the variation in its promoter region in wine yeast. J. Bacteriol. 98: 394-397 (2004)
- Costa A, Barata A, Malfeito-Ferreira M, Loureiro V. Evaluation of the inhibitory effect of dimethyl dicarbonate against wine microorganisms. Food Microbiol. 25: 422-427 (2008) https://doi.org/10.1016/j.fm.2007.10.003
- Mateo JJ, Jimenez M, Pastor A, Huerta T. Yeast starter cultures affecting wine fermentation and volatiles. Food Res. Int. 34: 307-314 (2001) https://doi.org/10.1016/S0963-9969(00)00168-X
- Devatine A, Chiciuc L, Poupot C, Peuchot MM. Micro-oxygenation of wine in presence of dissolved carbon dioxide. Chem. Eng. Sci. 62: 4579-4588 (2007) https://doi.org/10.1016/j.ces.2007.05.031
- Debs-Louka E, Louka N, Abraham G, Charbot V, Allaf K. Effect of compressed carbon dioxide on microbial cell viability. Appl. Environ. Microb. 65: 626-631 (1999)
- Van Hoek P, van Dijken JP, Pronk JT. Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb. Tech. 26: 724-736 (2000) https://doi.org/10.1016/S0141-0229(00)00164-2
- Graumligh TR, Stevenson KE. Respiration and viability of thermally injured Saccharomyces cerevisiae. Appl. Environ. Microb. 38: 461-465 (1979)
- Nagodawithana TW, Casterllano C, Steinkraus KH. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations. Appl. Microbiol. 28: 383-391 (1974)
- Bartowsky EJ, Henschke PA. Acetic acid bacteria spoilage of bottled red wine- a review. Int. J. Food Microbiol. 125: 60-70 (2008) https://doi.org/10.1016/j.ijfoodmicro.2007.10.016
- Al-Numair KS, Ahmed SEB, Al-Assaf AH, Alamri MS. Hydrochloric acid extractable minerals and phytate and polyphenols contents of sprouted faba and white bean cultivars. Food Chem. 113: 997-1002 (2009) https://doi.org/10.1016/j.foodchem.2008.08.051
- Lee YR, Nho JW, Hwang IG, Kim WJ, Lee YJ, Jeong HS. Chemical composition and antioxidant activity of ramie leaf (Boehmeria nivea L.). Food Sci. Biotechnol. 18: 1096-1099 (2009)
- Du GMLi, Ma F, Liang D. Antioxidant capacity and the relationship with polyphenol and vitamin C in actinidia fruits. Food Chem. 113: 552-562 (2009)
- Śusarczyk S, Hajnos M, Skalicka-WoŸiak K, Matkowski A. Antioxidant activity of polyphenols from Lycopus lucidus Turcz. Food Chem. 113: 134-138 (2009) https://doi.org/10.1016/j.foodchem.2008.07.037
- Jeon BY, Kim SJ, Kim DH, Na BK, Park DH, Tran HT, Zhang R, Ahn DH. Development of a serial bioreactor system for direct ethanol production from starch using Aspergillus niger and Saccharomyces cerevisiae. Biotechnol. Bioproc. E. 12: 566-573 (2007) https://doi.org/10.1007/BF02931356
- Higuchi M. The effect of oxygen on the growth and mannitol fermentation of Streptococcus mutans. J. Gen. Microbiol. 130: 1819-1826 (1984)
- Alexandre H, Rousseaux I, Charpentier C. Relationship between ethanol tolerance, lipid composition, and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera epiculata. FEMS Microbiol. Lett. 124: 17-22 (1994) https://doi.org/10.1111/j.1574-6968.1994.tb07255.x
- Sablayrolles JM, Dubois C, Manginot C, Roustan JL, Barre P. Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations. J. Ferment. Bioeng. 82: 377-381 (1996)
- Castro AJ, Barbosa-Canovas GV, Swanson BG. Microbial inactivation of foods by pulsed electric fields. J. Food Process. Pres. 17: 47-73 (1993) https://doi.org/10.1111/j.1745-4549.1993.tb00225.x
- Palaniappan S, Sastry SK, Richter ER. Effects of electricity on microorganisms: A review. J. Food Process. Pres. 14: 393-414 (1990) https://doi.org/10.1111/j.1745-4549.1990.tb00142.x
- Zhang Q, Qin B-L, Barbosa-Canovas GV, Swanson BG. Inactivation of E. coli for food pasteurization by high-strength pulsed electric fields. J. Food Process. Pres. 19: 103-118 (1995) https://doi.org/10.1111/j.1745-4549.1995.tb00281.x
- Grahl T, Maerkl H. Killing of microorganisms by pulsed electric fields. Appl. Microbiol. Biot. 45: 148-157 (1996) https://doi.org/10.1007/s002530050663
- Rosenfeld E, Beauvoit B, Blondin B, Salmon J-M. Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: Effect on fermentation kinetics. Appl. Environ. Microb. 69: 113-121 (2003) https://doi.org/10.1128/AEM.69.1.113-121.2003
- Burke PV, Kwast KE, Everts F, Poyton RO. A fermenter system for regulating oxygen at low concentration in cultures of Saccharomyces cerevisiae. Appl. Environ. Microb. 64: 1040-1044 (1998)
- Bruinenberg PM, De Bot PHM, Van Dijken JP, Scheffers WA. The role of the redox balance in the anaerobic fermentation of xylose by yeasts. Eur. J. Appl. Microbiol. 18: 287-292 (1983) https://doi.org/10.1007/BF00500493
- Li Z, Pan QH, Jin, ZM, He JJ, Liang NN, Duan CQ. Evolution of 49 phenolic compounds in shortly-aged red wines made from Cabernet Gernischt (Vitis vinifera L.cv.). Food Sci. Biotechnol. 18: 1001-1012 (2009)