Immunomodulatory Effects of a Methanol Extract from Opuntia ficus indica on Murine Splenocytes

  • Ahn, Gin-Nae (Department of Marine Life Science, Jeju National University) ;
  • Kim, Jin-Hee (Department of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University) ;
  • Park, Eun-Jin (Department of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University) ;
  • Lim, Yoon-Kyu (Department of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University) ;
  • Jee, Young-Heun (Department of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University)
  • Published : 2009.12.31

Abstract

Multiple beneficial properties of Opuntia ficus indica (OPF) are well established. In the present study, we have investigated the immunological role of OPF extract (OPFE) on murine splenocytes. OPFE dose- and time-dependently enhanced the proliferation of splenocytes without cytotoxicity. Our results also showed that the number of $CD4^+$ helper T cells and CD45R/$B220^+$ pan B cells increased markedly, but not $CD8^+$ cytotoxic T cells or $CD11b^+$ granulocytes/macrophages. In addition, OPFE significantly decreased the production levels of T helper (Th) 1 type cytokines, interferon (IFN)-$\gamma$, and tumor necrosis factor (TNF)-$\alpha$, although had no significantly differences in those of interleukin (IL)-4, a Th2 type cytokine in concanavalin A (Con A)-stimulated blastogenic cells. Furthermore, OPFE alone strongly increased IL-4 production and decreased TNF-$\alpha$ production even in the absence of Con A. On the basis of these results, this study suggests that OPFE enhances immunity by regulating the pro- and anti-inflammatory response, indicating that this extract exerts a marked immunomodulatory effect, confirming its usefulness as therapy for immune-related diseases.

Keywords

References

  1. El Kossori RL, Villaume C, El Boustani E, Sauvaire Y, Mejean L. Composition of pulp, skin, and seeds of prickly pear fruit (Opuntiaficus indica sp.). Plant Food Hum. Nutr. 52: 263-270 (1998) https://doi.org/10.1023/A:1008000232406
  2. Pedreni MA, Escribano J. Studying the oxidation and the antiradical activity of betalain from beetroot. J. Biol. Educ. 351: 49-51 (2000)
  3. Strack D, Vogt T, Schliemann W. Recent advances in betalain research. Phytochemistry 62: 247-269 (2003) https://doi.org/10.1016/S0031-9422(02)00564-2
  4. Tesoriere L, Butera D, Pintaudi AM, Allegra M, Livrea MA. Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: A comparative study with vitamin C. Am. J. Clin. Nutr. 802: 391-395 (2004)
  5. Laurenz JC, Collier CC, Kuti JO. Hypoglycaemic effect of Opuntia lindheimeri Englem in a diabetic pig model. Phytother. Res. 171: 26-29 (2003)
  6. Galati EM, Mondello MR, Giuffrida D, Dugo G, Miceli N, Pergolizzi S, Taviano MF. Chemical characterization and biological effects of Sicilian Opuntia ficus indica (L.) mill. Fruit juice: Antioxidant and antiulcerogenic activity. J. Agr. Food Chem. 51: 4903-4908 (2003) https://doi.org/10.1021/jf030123d
  7. Loro JF, Roi ID, Perez-Santana L. Preliminary stydies of analgesic and anti-inflammatory properties of Opuntia dillenii aqueous extract. J. Ethnopharmacol. 67: 213-218 (1999) https://doi.org/10.1016/S0378-8741(99)00027-6
  8. Park EH, Chun MJ. Wound healing activity of Opuntia ficus-indica. Fitoterapia 72: 165-167 (2001) https://doi.org/10.1016/S0367-326X(00)00265-3
  9. Siriwardhana N, Jeon YJ. Antioxidative effect of cactus pear fruit (Opuntia ficus-indica) extract on lipid peroxidation inhibition in oils and emulsion model systems. Eur. Food Res. Tech. 219: 369-376 (2004)
  10. Park EH, Kahng JH, Paek EA. Studies on the pharmacological action of cactus: Identification of its anti-inflammatory effect. Arch. Pharm. Res. 21: 30-34 (1998) https://doi.org/10.1007/BF03216749
  11. Park EH, Kahng JH, Lee SH, Shin K. An anti-inflammatory principle from cactus. Fitoterapia 72: 288-290 (2001) https://doi.org/10.1016/S0367-326X(00)00287-2
  12. Ho HY, Cheng ML, Weng SF, Leu YL, Chiu DT. Antiviral effect of epigallocatechin gallate on Enterovirus 71. J. Agr. Food Chem. 57: 6140-6147 (2009) https://doi.org/10.1021/jf901128u
  13. Davis RH, Parker WL, Samson RT, Murdoch DP. The isolation of an active inhibitory system from an extract of aloe vera. J. Am. Podiat. Med. Assn. 81: 258-261 (1992)
  14. Shelton RM. Its chemical and therapeutic properties. Int. J. Dermatol. 30: 679-683 (1991) https://doi.org/10.1111/j.1365-4362.1991.tb02607.x
  15. Park EJ, Lee NH, Ahn G, Baik JS, Lee J, Hwang KK, Park JW, Jee Y. Inhibition of apoptosis by Elaeocarpus sylvestris in mice following whole- body exposure to ionizing radiation: Implications for radioprotectors. Food Sci. Biotechnol. 17: 718-722 (2008)
  16. Ahn G, Park EJ, Kim DS, Jeon YJ, Shin T, Park JW, Woo HC, KW Lee, Jee Y. Anti- inflammatory effects of enzymatic extract from Ecklonia cava on TPA- induced ear skin edema. Food Sci. Biotechnol. 17: 745-750 (2008)
  17. Castilla P, Echarri R, Davalos A, Cerrato F, Ortega H, Teruel JL, Lucas MF, Gomez-Coronado D, Ortuno J, Lasuncion MA. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am. J. Clin. Nutr. 841: 252-262 (2006)
  18. Sato T, Nyborg AC, Iwata N, Diehl TS, Saido TC, Golde TE, Wolfe MS. Signal peptide peptidase: Biochemical properties and modulation by nonsteroidal antiinflammatory drugs. Biochemistry 4528: 8649-8656 (2006) https://doi.org/10.1021/bi060597g
  19. Fernandez-Lopez JA, Almela L. Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits. J. Chromatogr. A 913: 415-420 (2001) https://doi.org/10.1016/S0021-9673(00)01224-3
  20. SaiRam M, Sharma SK, Ilavazhagan G, Kumar D, Selvamurthy W. Immunomodulatory effects of NIM-76, a volatile fraction from neem oil. J. Ethnopharmacol. 552: 133-139 (1997)
  21. Dale MM, Foreman JC, Fan TD. Textbook of Immunopharmacology. 3rd ed. Blackwell Scientific Publication, London, UK. pp.179-192 (1994)
  22. Patwardhan B, Kalbag D, Parki PS, Nagsampagi BA. Search of immunomodulatory agents- A review. Indian Drug 28: 249-254 (1991)
  23. Gracious R, Selvasubramanian S, Jayasundar S. Immunomodulatory activity of Punica granatum in rabbits-A preliminary study. J. Ethnopharmacol. 78: 85-87 (2001) https://doi.org/10.1016/S0378-8741(01)00287-2
  24. Zhao W, Ye Q, Tan X, Jiang H, Li X, Chen K, Kinghorn AD. Three new sesquiterpene glycosides from Dendrobium nobile with immnomodulatory activity. J. Nat. Prod. 64: 1196-2000 (2001) https://doi.org/10.1021/np0102612
  25. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2, and more. Immunol. Today 17: 142-146 (1996)
  26. Schifitto G, McDermott MP, Evans T, Fitzgerald T, Schwimmer J, Demeter L, Kieburtz K. Autonomic performance and dehydroepiandrosterone sulfate levels in HIV-1-infected individuals: Relationship to TH1 and TH2 cytokine profile. Arch. Neurol. 577: 1027-1032 (2000)
  27. Ren F, Zhang S, Mitchell SH, Butler R, Young CY. Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene 19: 1924-1932 (2000) https://doi.org/10.1038/sj.onc.1203511
  28. Liang YC, Lin-shiau SY, Chen CF, Lin JK. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (–.)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J. Cell. Biochem. 67: 55-65 (1997) https://doi.org/10.1002/(SICI)1097-4644(19971001)67:1<55::AID-JCB6>3.0.CO;2-V
  29. Kennedy DO, Nishimura S, Hasuma T, Yano Y, Otani S, Matsui-Yuasa I. Involvement of protein tyrosine phosphorylation in the effect of green tea polyphenols on Ehrlich ascites tumor cells in vitro. Chem.-Biol. Interact. 110: 159-172 (1998) https://doi.org/10.1016/S0009-2797(98)00005-2