Location Based Concierge Service with Spatially Extended Topology for Moving Objects

  • Lee, Byoung-Jae (Department of Information Technology Leadership, Washington & Jefferson College)
  • Published : 2009.12.31

Abstract

Beyond simple transfer of information through sensor network, this study will provide the insights about the way to embody the real context aware location based service in an ubiquitous computing environment. In this paper, a new formal approach is introduced to derive knowledge about the scope of influence for a point object. A scope of influence is defined as the conceptual area where there is a possibility of the phenomenon or event occurring because of this point object. A point object can be spatially extended by considering this scope of influence in conjunction with the point. These point objects are called Spatially Extended Point (SEP) objects. Compositions of gradual changes of topological relations between a SEP and the environment near the SEP show how to represent the qualitative spatial behaviors of a SEP objects. These qualitative spatial behaviors will be good standards for Location Based Service (LBS) to provide more subdivided and suitable information to the users.

이 연구는 센서 네트워크를 통한 단순한 정보 전달을 넘어서서 유비쿼터스 컴퓨팅 환경에서의 진정한 상황인식 위치 기반 서비스를 구현하기 위한 방법에 대한 제안을 하고자 한다. 그러기 위해, 이 글에서는 점 개체의 영향력 범위에 대한 새로운 형식의 접근이 소개된다. 여기서, 영향력 범위란 점 개체 주변에 점 개체로 인해 어떤 현상이나 사건이 발생한 가능성이 있는 구역을 설정한 것을 뜻한다. 점 개체는 이러한 영향력 범위설정을 통해 공간적으로 확장 될 수 있다. 이러한 점 개체를 Spatially Extended Point (SEP) 개체라 한다.SEP와 그 주변 환경 사이의 위상적 관계의 점진적 변화 조합은 그 개체의 정성적 공간 행위를 표현하는데 이용될 수 있다. 이렇게 표현된 정성적 공간 행위들은 좀더 구체적이고 적합한 정보를 사용자에게 제공하는데 필요한 기준으로 쓰일 수 있다.

Keywords

References

  1. Bennett, B., Cohn, A. G., Torrini, P., and Hazarika, S. M., 2000, A foundation for region-based qualitative geometry, In: the 14th European Conference on Artificial Intelligence (ECAI-2000), 204-208.
  2. Bittner, T. and Stell, J. G., 2002, Vagueness and Rough Location, Geoinformatica, 6, 99-121. https://doi.org/10.1023/A:1015291525685
  3. Clarke, B. L., 1985, Individuals and points, Notre Dame J. Formal Logic, 26, 61-67. https://doi.org/10.1305/ndjfl/1093870761
  4. Clementini, E. and Di Felice, P., 1997, Approximate topological relations, International Journal of Approximate Reasoning, 16(2), 173-204. https://doi.org/10.1016/S0888-613X(96)00127-2
  5. Clementini, E., Di Felice, P., and van Oosterom, P., 1993, A Small Set of Formal Topological Relationships for End-User Interaction, In: Advances in Spatial Databases - Third Internation Symposium, 277-295.
  6. Cohn, A. G. and Gotts, N. M., 1996, The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In P. A. Burrough and A. U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (pp. 171-187), London: Taylor & Francis, 374 pages.
  7. Egenhofer, M., 1997, Query Processing in Spatial-Queryby-Sketch, JVLC, 8(4), 403-424. https://doi.org/10.1006/jvlc.1997.0054
  8. Egenhofer, M. and Sharma, J., 1993, Topological Relations Between Regions in R2 and Z2, In: Advances in Spatial Databases-Third International Symposium on Large Spatial Databases, SSD. Singapore.,316-336.
  9. Egenhofer, M. J., 1989, A Formal Definition of Binary Topological Relationships, LNCS, 367, 457-472.
  10. Egenhofer, M. J. and Al-Taha, K. K., 1992, Reasoning About Gradual Changes of Topological Relationships. LNCS, 639, 196-219.
  11. Egenhofer, M. J. and Franzosa, R. D., 1991, Point-Set Topological Spatial Relations, International Journal of Geographic Information Science, 5(2), 161-174. https://doi.org/10.1080/02693799108927841
  12. Egenhofer, M. J. and Franzosa, R. D., 1995, On the Equivalence of Topological Relations, International Journal of Geographic Information Science, 9(2), 133-152. https://doi.org/10.1080/02693799508902030
  13. Egenhofer, M. J. and Herring, J., 1990, A Mathematical Framework for the Definition of Topological Relationships, In: Fourth International Symposium on Spatial Data Handling. Zurich, Switzerland, 803-813.
  14. Freksa, C., 1992, Temporal Reasoning Based on Semi-Intervals, AI, 54(1), 199-227.
  15. Grigni, M., Papadias, D., and Papadimitriou, C. H., 1995, Topological Inference, In: IJCAI (1), 901-907.
  16. Hernandez, D., 1994, Qualitative Representation of Spatial Knowledge (1st ed.), Springer Verlag, 202 pages.
  17. Huber, A. and Huber, J., 2002, UMTS and mobile computing (1st ed.), Artech House Publishers, 460 pages.
  18. Lee, B. and Flewelling, D. M., 2004, Spatial Organicism: Relations between a Region and a Spatially Extended Point. In: Extended Abstract, The Third International Conference on Geographic Information Science (GI Science 2004).
  19. Lehmann, F. and Cohn, A. G., 1995, The EGG/YOLK reliability hierarchy: Semantic data integration using sorts with prototypes, In: 3rd Int. Conf. on Information and Knowledge Management, 272-279.
  20. Li, K., 2008, Indoor Spatial Awareness Project and Indoor Spatial Data Model, Journal of GIS Association of Korea, 16(4), 441 - 453.
  21. Papadias, D., Theodoridis, Y., Sellis, T., and Egenhofer, M., 1995, Topological relations in the world of minimum bounding rectangles: a study with R-trees, In: ACM SIGMOD. San Jose, California, 92-103.
  22. Park, K., Jung, J., and Hwang, M., 2002, Design of gCRM system integrated with LBS, Journal of GIS Association of Korea, 10(4), 567 - 578.
  23. Randell, D. A., Cui, Z., and Cohn, A. G., 1992, A spatial logic based on regions and connection, In: 3rd Int. Conf. on Knowledge Representation and Reasoning. Cambridge, Massachusetts, 165-176.
  24. Shariff, A., Egenhofer, M. J., and Mark, D. M., 1998, Natural-language spatial relations between linear and areal objects: the topology and metric of English-language terms, International Journal of Geographic Information Science, 12(3), 215-245.
  25. Tryfona, N. and Egenhofer, M., 1997, Consistency among Parts and Aggregates: A Computational Model, Transactions in GIS, 1(3), 189-206. https://doi.org/10.1111/j.1467-9671.1996.tb00044.x
  26. Weiser, M., 1991, The computer for the twenty-first century. Scientific American, 265(3), 94-100. https://doi.org/10.1038/scientificamerican0991-94