DOI QR코드

DOI QR Code

In vitro Inhibition of Fungal Root-Rot Pathogens of Panax notoginseng by Rhizobacteria

  • Guo, Rongjun (State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences) ;
  • Liu, Xingzhong (Key Laboratory of Systematic Mycology & Lichenology, Institute of Microbiology, Chinese Academy of Sciences) ;
  • Li, Shidong (State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences) ;
  • Miao, Zuoqing (State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
  • Published : 2009.03.31

Abstract

The rhizobacteria of Panax notoginseng were isolated from six sites in Yanshan, Maguan and Wenshan Counties, Yunnan Province of China, and their antagonistic activity against P. notoginseng root-rot fungal pathogens was determined. Of the 574 rhizobacteria isolated, 5.8% isolates were antagonistic in vitro to at least one of the five pathogens, Cylindrocarpon didynum, Fusarium solani, Phytophthora cactorum, Phoma herbarum, and Rhizoctonia solani. The number of rhizo bacteria and the number that inhibited fungi differed depending on sampling sites and isolation methods. Rhizobacteria isolated from the site in Yanshan and Maguan showed more antagonistic effect than them in Wenshan. Heat treatment of rhizosphere soil at $80^{\circ}C$ for 20 min scaled the antagonists up to 14.0%. Antagonistic bacteria in the roots proportioned 3.9% of the total isolates. The most antagonistic isolates 79-9 and 81-4 are Bacillus subtilis based on their 168 rDNA sequence and biochemical and physiological characteristics. Identification and evaluation of antagonistic bacteria against P. notoginseng root-rot pathogens in the main planting areas improved our understanding of their distribution in rhizosphere soil. Furthermore these results indicated that the interactions between biocontrol agent and soil microbes should be seriously considered for the successful survival and biocontrol efficacy of the agents in soil.

Keywords

References

  1. Amir, H. and Alabouvette C. 1993. Involvement of soil abiotic factors in the mechanisms of soil suppressiveness to fusarium wilts. Soil BioI. Biochem. 25: 157-164 https://doi.org/10.1016/0038-0717(93)90022-4
  2. Burr, T. J., Schroth, M. N. and Suslow, T. 1978. Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas jluorescens and P. putida. Phytopathology 68: 1377-1383 https://doi.org/10.1094/Phyto-68-1377
  3. Cui, X. M., Xu, L. S., Wang, Q. and Chen, Z. J. 2005. Analysis on the geologic background and physicochemical properties of soil for the cultivation of Panax notoginseng in Yunnan province. J. Chn. Materia Medica 30:332-335 (In Chinese, with English Abst.)
  4. De La Fuente, L., Landa, B. B. and Weller, D. M. 2006. Host crop affects rhizosphere colonization and competitiveness of 2,4- diacetylphloroglucinol producing Pseudomonas jluorescens. Phytopathology 96:751-762 https://doi.org/10.1094/PHYTO-96-0751
  5. Dong, F. Z., Liu, Z. W. and Le, L. T. 1998. Panax notoginseng in Yunnan. pp 103-114, Yunnan Science and Technology Press, Kunming, CHN. (In Chinese)
  6. Emmert, E. A. B and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram) positive perspective. FEMS Microhiol. Lett. 171 :1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  7. Holt, J. G, Krieg, R. N., Sneath, P. H. A., Staley, J. T. and Williams, S. T. 1994. Bergey's Manual of Determinative Bacteriology, 9th ed. Williams & Wilkins, Baltimore, USA
  8. Hong, S. C., Gray, A. B., Asiedu, S. K. and Ju, H. Y 2000. The evaluation of Trichoderma isolates, benomyl, and propiconazole against Cylindrocarpon destructans. Can. J. Plant Sci. 80:231 https://doi.org/10.4141/P99-CSHabstracts
  9. Joshi, R. and Gardener, B. B. M. 2006. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 96:145-154 https://doi.org/10.1094/PHYTO-96-0145
  10. Kim, S. L., Shin, J. O., Shin, H. S., Choi, H. J. and Lee, M. W. 1992. Suppressive mechanism of soil-borne disease development and its practical application. Kor. J. Mycol. 20:337-346
  11. Kim, S. L., Yoo, S. J. and Kim, H. G 1997. Selection of antagonistic bacteria for biological control of ginseng diseases. Kor. J. Plant Pathol. 13:342-348
  12. Kloepper, 1. W. and Bowen, K. L. 1991. Quantification of the geocarposphere and rhizosphere effect of peanut (Arachis hypogaea L.). Plant Soil 136: 103-109 https://doi.org/10.1007/BF02465225
  13. Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5:150-163 https://doi.org/10.1093/bib/5.2.150
  14. Lei, L. P., Xia, Z. Y, Wang, Y., Wei, H. L. and Liu, X. Z. 2007. Isolation and characterization of nicotine-degrading bacterial strain L 1. J. Agri. Biotech. 15: 721-722
  15. Li, T. S. C., Utkhede, R. S. and Wardle, D. A. 1997. Chemical and biological control of leaf blight and root rot caused by Phytophthora cactorllln in American ginseng. Can. J. Plant Pathol. 19:297-300 https://doi.org/10.1080/07060669709500527
  16. Liu, L. Z., Wang, Q. F., Zhang, K. Q. and, Li, S. D. 2004. The sclection of antifungal bacteria against root rot of Panax notoginseng and the isolation of active metabolism substance. J. Yunnan University 26:357-359 (In Chinese, with English Abst.)
  17. Gardener, B. B. M., Gutierrez, L. J., Joshi, R., Edema, R. and Lutton, E. 2005. Distribution and biocontrol potential of phlD pseudomonads in com and soybean fields. Phytopathology 95:715-724 https://doi.org/10.1094/PHYTO-95-0715
  18. Miao, Z. Q., Li. S. D., Liu, X. Z., Chen, Y J., Li, Y H., Wang, Y, Guo, R. J., Xia, Z. Y and Zhang, K. Q. 2006. The causal microorganisms of Panax notoginseng root rot disease. Sci. Agric. Sinica 39: 1371-1378
  19. Natsch, A., Keel C, Hhebecker, N., Laasik, E. and, dDefago, G 1998. Impact of Pseudomonasfluorescens CHAO and a derivative with improved biocontrol activity on the culturable resident bacterial community on cucumber roots. FEMS Microhiol. Ecol. 27:365-380 https://doi.org/10.1111/j.1574-6941.1998.tb00552.x
  20. Peters, R. D., Sturz, A. V, Carter, M. R. and Sanderson, J. B. 2003. Developing disease-suppressive soils through crop rotation and tillagc management practiccs. Soil Tillage Res. 72: 181-192 https://doi.org/10.1016/S0167-1987(03)00087-4
  21. Roberts, D. P., Dery, P. D., Yucel, I. and Buyer, J. S. 2000. Importance of pfk A for rapid growth of Enterobacter cloacae during colonization of crop secds. Appl. Environ. Microbial. 66:87-91 https://doi.org/10.1128/AEM.66.1.87-91.2000
  22. Rosenzweig, W. D. and Stotzky, G 1979. Influence of Environmcntal factors on antagonism of fungi by bacteria in soil: clay minerals and pH. Appl. Environ. Microbial. 38:1120-1126
  23. Sam brook, J. and Russell, D. W. 1998. Molecular Cloning: A Lahoratory A1anual, 3rd edn, Cold Spring Harbor Laboratory Press
  24. Schaad, N. W., Jones, J. B. and Chun, W. 2001. LaboratOlY Guide for Identification of Plant Pathogenic Bacteria. APS Press, The American Phytopathological Society. St. Paul, Minnesota, pp 3-4
  25. Shiomi, Y, Nishiyama, M., Onizuka, T. and Mmarumoto, T. 1999. Comoarison of bacterial community structures in the rhizosplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl. Environ. Biol. 65:3996-4001
  26. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G 1997. The CLUSTAL_X windows interface: lexible strategics for multiple sequencc alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882 https://doi.org/10.1093/nar/25.24.4876
  27. Walker, R., Powell, A. A. and Seddon, B. 1998. Bacillus isolates trom the spermosphere of peas and dwarf French beans with antifungal activity against Bortyfis cinerea and Pythium species. J. Appl. Microhiol. 84: 791-801 https://doi.org/10.1046/j.1365-2672.1998.00411.x
  28. Weisburg, W. G, Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacterial. 173:697-703 https://doi.org/10.1128/jb.173.2.697-703.1991
  29. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopath. 26:379-407 https://doi.org/10.1146/annurev.py.26.090188.002115
  30. Whipps, J. M. 1997a. Developments in the biological control of soil-borne plant pathogens. Adv. Bot. Res. 26: 1-134 https://doi.org/10.1016/S0065-2296(08)60119-6
  31. Whipps, J. M. 1997b. Ecological considerations involved in commercial development of biological control agents for soilborne diseases. In: Modern soil microbiology. eds. by J. D. van Elsas, J. T. Trevors, E. M. H. Wellington, eds. Modem soil microbiology. New York: Marcel Dekker, pp 525-546
  32. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Experim. Bot. 52:487-511 https://doi.org/10.1093/jexbot/52.suppl_1.487

Cited by

  1. Isolation and characterization of antifungal violacein producing bacterium Collimonas sp. DEC-B5 vol.52, pp.2, 2016, https://doi.org/10.7845/kjm.2016.6031
  2. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system vol.6, pp.1, 2016, https://doi.org/10.1038/srep31802
  3. Antifungal metabolites from the rhizospheric Penicillium sp. YIM PH 30003 associated with Panax notoginseng vol.11, 2015, https://doi.org/10.1016/j.phytol.2015.01.010
  4. Isolation and Characterization of Actinomycete Strain BK185 Possessing Antifungal Activity against Ginseng Root Rot Pathogens vol.18, pp.4, 2014, https://doi.org/10.7585/kjps.2014.18.4.396
  5. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices vol.194, 2017, https://doi.org/10.1016/j.micres.2016.09.009
  6. Investigation and integrated molecular diagnosis of root-knot nematodes in Panax notoginseng root in the field vol.137, pp.4, 2013, https://doi.org/10.1007/s10658-013-0277-5
  7. Diversity and composition of rhizospheric soil and root endogenous bacteria inPanax notoginsengduring continuous cropping practices vol.57, pp.4, 2017, https://doi.org/10.1002/jobm.201600464
  8. The antifungal metabolites obtained from the rhizosphericAspergillussp. YIM PH30001 against pathogenic fungi ofPanax notoginseng vol.28, pp.24, 2014, https://doi.org/10.1080/14786419.2014.935941
  9. Screening of Antagonistic Bacteria having Antifungal Activity against Various Phytopathogens vol.42, pp.4, 2014, https://doi.org/10.4489/KJM.2014.42.4.333
  10. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng vol.40, pp.2, 2016, https://doi.org/10.1016/j.jgr.2015.05.003
  11. Isolation and Characterization of Bacillus Species Possessing Antifungal Activity against Ginseng Root Rot Pathogens vol.16, pp.4, 2012, https://doi.org/10.7585/kjps.2012.16.4.357