SOME GENERALIZED HIGHER SCHWARZIAN OPERATORS

  • Kim, Seong-A (Department of Mathematics Education, Dongguk University)
  • Published : 2009.02.28

Abstract

Tamanoi proposed higher Schwarzian operators which include the classical Schwarzian derivative as the first nontrivial operator. In view of the relations between the classical Schwarzian derivative and the analogous differential operator defined in terms of Peschl's differential operators, we define the generating function of our generalized higher operators in terms of Peschl's differential operators and obtain recursion formulas for them. Our generalized higher operators include the analogous differential operator to the classical Schwarzian derivative. A special case of our generalized higher Schwarzian operators turns out to be the Tamanoi's operators as expected.

Keywords

References

  1. D. Aharonov: A necessary and sufficient condition for univalence of a meromorphic function. Duke Math. J. 36 (1969), 599-604. MR 40 #2865 https://doi.org/10.1215/S0012-7094-69-03671-0
  2. P. Duren: Univalent functions, Springer Verlag New York Inc., 1983. MR 85j:30034
  3. S. Kim & D. Minda: The hyperbolic and quasihyperbolic metrics in convex regions. J. Analysis 1 (1993), 109-118. MR 94h:30005
  4. S. Kim & D. Minda: The hyperbolic metric and spherically convex regions. J. Math. Kyoto Univ. 41 (2001), 285-302. MR 2002j:30070 https://doi.org/10.1215/kjm/1250517634
  5. S. Kim & T. Sugawa: Invariant differential operators associated with a conformal metric, Michigan Math. J. 55 (2007), 459-479. MR 2008k:30053 https://doi.org/10.1307/mmj/1187647003
  6. S. Kim & T. Sugawa : Invariant Schwarzian derivatives of higher order, submitted (2009)
  7. W. Ma & D. Minda: Spherical linear invariance and uniform local spherical convexity. Current Topics in Analνtic Function Theory (H.M. Srivastava and S. Owa, editors), World Scientific Publ. Co., Singapore, 1992, 148-170. MR 94f:30009
  8. W. Ma & D. Minda : Two-point distortion theorems for bounded univalent functions. Ann. Acad. Sci. Fenn. Math. 22 (1997), 425-444. MR 98i:30011
  9. E. Peschl: Les invariants differentiels non holomorphes et leur role dans la theorie des fonctions. Rend. Sem. Mat. Messina 1 (1955), 100-108. MR 20 #957
  10. E. Schippers: Conformal invariants and higher-order Schwarz lemmas. J. Analyse Math. 90 (2003), 217-241. MR 2005b:30022 https://doi.org/10.1007/BF02786557
  11. The calculus of conformal metrics. Ann. Acad. Sci. Fenn. Math. 32 (2007), 497-521. MR 2008h:53014
  12. H. Tamanoi: Higher Schwarzian operators and combinatorics of the Schwarzian derivative. Math. Ann. 305 (1996), 127-151. MR 97h:30001 https://doi.org/10.1007/BF01444214