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ON THE STABILITY OF MODULE LEFT DERIVATIONS
IN BANACH ALGEBRAS

YANG-HI LEE® AND YONG-S00 Jung P *

ABSTRACT. In this paper, we improve the generalized Hyers-Ulam stability and the
superstability of module left derivations due to the results of [7].

1. INTRODUCTION

Let A be an algebra over the real or complex field F and M a left A-module
(respectively, A-bimodule). An additive map § : A — M is said to be a module
left derivation (respectively, module derivation) if §(zy) = xd(y) + yé(z) (respec-
tively, d(zy) = z6(y) + d(x)y) holds for all z,y € A. Since A is a left A-module
(respectively, A-bimodule) with the product of A giving the module multiplication
(respectively, two module multiplications), the module left derivation (respectively,
module derivation) 6 : A — A is said to be a ring left derivation (respectively, ring
derivation) on A.

Recently, T. Miura et al. [8] considered the stability of ring derivations on Ba-
nach algebras: Under suitable conditions, every approximate ring derivation f on a
Banach algebra A is an exact ring derivation. In particular, if A is a commutative
semisimple Banach algebra with the maximal ideal space without isolated points,
then f is identically zero. The first stability result concerning derivations between
operator algebras was obtained by P. Semrl [11].

The study of stability problems originated from a famous talk given by S.M.
Ulam [12] in 1940: Under what condition does there exists a homomorphism near
an approximate homomorphism? In the next year 1941, D.H. Hyers [5] was answered

affirmatively the question of Ulam for Banach spaces, which states that if § > 0 and
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f:X —Y is a map with X a normed space, Y a Banach space such that

1f(z+y) - fl@) - fll <6
for all z,y € X, then there exists a unique additive map T : X — Y such that

If(z) -T(@)| <4
for all z € X. This stability phenomenon is called the Hyers-Ulam stability of the
additive functional equation
h{z +y) = h(z) + h(y).

A generalized version of the theorem of Hyers for approximate additive maps was
given by T. Aoki (1] in 1950. In 1978, Th.M. Rassias [10] independently introduced
the unbounded Cauchy difference and was the first to prove the stability of the linear
mapping between Banach spaces. If there exist ¢ > 0 and 0 < p < 1 such that

If(@+y) — flz) — f)l < 6(ll” + [lylIP)
for all z,y € X, then there exist a unique additive map T : X — Y such that

15(@) ~ T < 5o ol

for all z € X. Moreover, if f(tz) is continuous in ¢ € R for each fixed z in X, where

R denotes the set of the real numbers, then T is linear. Due to this fact, many
mathematicians say that the additive functional equation

Sflz+y) = flx)+ fly)
has the Hyers-Ulam-Rassias stability property. Since then, a great deal of work has
been done by a number of authors (for instances, [3, 6, 7]). In 1991, Z. Gajda [2]
answered the question for the case p > 1, which was raised by Rassias. Gajda [2]
also gave an example that the Rassias’ stability result is not valid for p = 1.

On the other hand, J.M. Rassias [9] generalized the Hyers’ stability result by
presenting a weaker condition controlled by a product of different powers of norms.
That is, assume that there exist constants ¢ > 0 and p;,p € R such that p =
p1+p2#1,and f: X — Y is a map with X a normed space, Y a Banach space
such that the inequality

If(x+y) = flz) = F)Il < Ozl flyliP?
for all z,y € X, then there exist a unique additive map T : X — Y such that

1/ (<) - T < g5 l=l?
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for all z € X. If, in addition, f(tz) is continuous in ¢ € R for each fixed z in X,

then T is linear. A counter-example for a singular case of this result was given by
P. Gavruta [4].

Our purpose in this paper is to deal with the stability problems of module left
derivations and to improve the results in {7].

2. STABILITY OF MODULE LEFT DERIVATIONS
IN THE SENSE OF J.M. RASSIAS

In this section, N will denote the set of the natural numbers.

Theorem 2.1. Let A be a normed algebra and let M be a Banach left A-module.
Suppose that f: A — M is a map such that

2.1 If(z+y) — f(x) = F)ll < Oll=l” flylIP2,
(2.2) If(zy) — 2 f(y) —yf ()| < elle]|® iyl

for some 6, > 0 and some p1,p2,q1,q2 € R such thatp=p1+p2 # 1L, q1 #1,q2 # 1,
and all z,y € A\{0}. Ifp<1l,q2 <1 orp>1,q > 1, then there exists a unique
module left derivation 6 : A — M such that

(2.3) If(z) = d(2)| <

for all x € A\{0} and f(0) = 6(0).

6
2=

[P

Proof. Assume that p < 1, g < lorp> 1,2 > 1. Sett=1ifp<l, g <1
and 7 = —1if p > 1, g > 1. By the J.M. Rassias’ result [9], the inequality (2.1)
guarantees that there exists a unique additive map ¢ : A — M defined by

limy, 00 277" f(27"x) if z#0
2.4 ozx) =
24) @) {0 it =0

such that (2.3) holds for all x € A\{0}. We claim that é(zy) = zd(y) + yd(x) for all
z,y € A. Since ¢ is additive, we see that §(z) = 277"§(2™"x) for all z € A and all
n € N. From (2.3), we have

I1£(0) = 6(0)|l = [1f((kz) + (—kx)) — f(kz) — f(—ka)|
+ |1 f(kz) = 6(ka)|| + [ f(—kz) — 6(=ka)|

< 01k[P ||z|P (H 1"272271>
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for all z € A\{0} and all k£ € R\{0} from which we deduce f(0) = 6(0). Using
(2.2), (2.3) and considering the fact that M is a Banach left A-module, there exists
a constant K > 0 such that
6(zy) — z0(y) — yf ()]
< fo(zy) =27 F2zy) || + 1272 wy) — 272 f(27y) — yf ()]
+ 1272 f(2y) — z6(y)l

2 fzpl Izl lly)? + 27 Dnejar ]9 |y 2

< 2T(p—1)’ﬂ
42 gy 0 as oo
-2
which implies that
(2.5) 6(zy) = zé(y) +yf(z)
for all z,y € A\{0}. From (2.5),
d(zy) =262 xy)
— 2~Tn21nw5(y) + 2~*rnyf(2'rnx)
=z0(y) +2 "y f(2"x)
and
O(zy) = lim (z8(y) + 27"y f(27"x)) = z0(y) + yo()
for all z,y € A\{0}. That is, ¢ is a module left derivation, as claimed and the proof
is complete, 0
Let A be an algebra. A leff A-module M is said to be unitary if A has a unit
element e and ex = u for all u € M.

Corollary 2.2. Let A be a unital normed algebra and let M be a unitary Banach
left A-module. Suppose that f : A — M is a map satisfying (2.1) and (2.2) for some
8, > 0 and some p1,p2,q1,92 €E R such thatp=p1+p2 # 1,0 # L. If p,g2a < 1 or
p,q2 > 1, then f is a module left derivation.

Proof. By Theorem 2.1, the inequalities (2.1) and (2,2) guarantee that there exists
a unique module left derivation 6 : A — M satisfying (2.5) for all z € A\{0} and
f(0) = 4(0). Since d(e) =0, it follows from (2.5) that

(z) = b(ze) = z(e) + ef(z) = £(x)
for all z € A\{0}. This completes the proof. O
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Theorem 2.3. Let A be a normed algebra and let M be a Banach left A-module.
Suppose that f: A — M is a map such that

1f(z+y) = f(z) = FW)I <Ollzl”llyll”,
If(zy) — 2 f(y) — yf(@)| < ellz]|*Ilyl|*

for some 0, > 0 and some p,q1,q2 € R such that p < 0,1 # 1,q2 # 1, and all
z,y € A\{0}. Then f is a module left derivation.

Proof. By Theorem 2.1, the inequalities (2.1) and (2.2) guarantee that there exists
a unique module left derivation 0 : A — M such that

Il

1£(2) = @) < 5
for all z € A\{0} and f(0) = (0). Since § : A — M is an additive map,
(@) = @)l = £ (@) = (K +1)z) - f(~ka)]
+ 170k + D) = 8((k + D)l + |1/ (—kz) = 6(=ka)|
< ke + 1P + 5o+ 17  Kf) 7,
1£(0) = 8(O)ll = 17 (k) + (—ka)) = f(ha) — f(~ka)]
+ £ (k2) = 8k + | £ (=) = 5(~ka)]

< 9|k|2pnwll‘2"(1 *3 —zzp)

for all z € A\{0} and all kK € R\ {0}. Taking k — oo in the above relations, we get
f(z) = b(x)
for all z € A which completes the proof. ]

3. STABILITY OF MODULE LEFT DERIVATIONS
IN THE SENSE OF TH.M. RaAssias

Theorem 3.1. Let A be a normed algebra and let M be a Banach left A-module.
Suppose that f : A — M is a map such that

(3.1) 1f(z+y) = F(z) = fF)Il < OClzll” + llvl®)
(3:2) 1f(zy) = zf(y) —yf(@) < el + ]

for some 6, > 0 and some p,q € R such that p # 1,q # 2, and all z,y € A\{0}.
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Ifp <1l,g < 2o0rp>1,q> 2, then there exists a unique module left derivation
d:A— M such that

(3.3) I1f(z) = 6(z)|l <
for all x € A\{0} and f(0) = 6(0).
Proof. Set T=1ifp<1l,g<2and 7= -1if p>1,¢qg> 2. By the Th.M. Rassias’

theorem [10], the inequality (3.1) guarantees that there exists a unique additive map

d: A — M satisfying (3.3) holds for all x € A\{0} and 6(z) is defined as (2.4). We
claim that §(zy) = 26(y) + yé(z) for all z,y € A. Since § is additive, we see that
6(x) =27""6(2"x) for all z € A and all n € N. From (3.1) and (3.3), we have

1£(0) = 6(0)l| = Il f((kz) + (—kz)) — f(kz) - (—kw)ll
+ || f(kz) = 8(k2)|| + || F(=kz) - 6(—kz)|

4
< Pllz|P { 2
< kPl +|2_2,,|)

for all z € A\{0} and all k¥ € R\{0}, hence f(0) = &§(0). Since f satisfies (3.2), we
get

20
2-2p

&4

12727 (2 zy) — 27 f(2y) — 27y F(27 )|

=27 f((22)(2™y)) - 27z f(27"y) — 2y f (2 )|

< 27 Ve (|7 + [ly[19)
for all 2,y € A\{0} and all n € N. By reminding of 7(g — 2) < 0, we see that

12727 (22" ay) — 27 f(27y) — 27Ty f(27)| - 0 as n— 0.
which implies that
5(sy) = lim (xd(y) + 27"y f(22)) = 2(y) + o()

for all z,y € A\{0}. Since §(0) = 0, § is a module left derivation, as claimed and
the proof is complete. (]

Theorem 3.2. Let A be a unital normed algebra and let M be a unitary Banach
left A-module. Suppose that f : A — M is a map satisfying (3.1) and (3.2) for some
0,e > 0 and some p,q € R such that p < 1,q < 1, and all z,y € A\{0}. Then f is
a module left derivation.

Proof. Let e be a unit element of A. By Theorem 3.1, there exists a unique module
left derivation 6 : A — M such that (3.3) is true. Recall that ¢ is additive, and
hence it is easy to see that 6(2z) = 26(x) for all z € A.
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The inequality (3.2) yields that

f(2"e) — P f(2re) — 27 f(2e)
271.

for all n € N. Passing to n — oo in (3.4), we get

f(2e) = Y6(c) — f(2e) = —f(2e), jEN.

< elll2rell? + [[27¢]9)

(3.4) < o

and so

(3.5) f(2e)=0, jeN.
Now it follows from (3.2) and (3.5) that
Il f(2rHz) — 2z f(27e) — 2™ f(27)||

I1f(22) = 2f(2)|| <

2TL
(3.6) L= e )+ af (2 e) + 20 f()|
2n
- e(l227 + |2ne + [la]? + 27+ ell)
< :

for all z € A and all n € N. Taking n — oo in (3.6), we see that f(2z) = 2f(z) for
all z € A which gives

271
d(z) = lim f(2nx) = f(=)
for all x € A. This completes the proof. a

Corollary 3.3. Let A be a unital normed algebra and let M be a unitary Banach
left A-module. Suppose that f: A — M is a map satisfying (3.1) and (3.2) for some
€ 2 0 and some p,q € R such that p < 0,q < 2, and all z,y € A\{0}. Then f is a
module left derivation.
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