아까시나무림에서 인공 숲틈 처리에 대한 졸참나무 식재목 및 하층식생의 초기 반응

Early Responses of Planted Quercus serrata Seedlings and Understory Vegetation to Artificial Gap Treatments in Black Locust Plantation

  • 조용찬 (서울여자대학교 대학원 생물학과) ;
  • 김준수 (경북대학교 과학기술대학원 산림환경자원학과) ;
  • 이중효 (국립환경과학원) ;
  • 이헌호 (영남대학교 산림자원학과) ;
  • 마호섭 (경상대학교 환경산림과학부) ;
  • 이창석 (서울여자대학교 생명환경과학부) ;
  • 조현제 (산림청 녹색사업단) ;
  • 배관호 (경북대학교 생태환경시스템학부)
  • Cho, Yong-Chan (Department of Biology, Graduate School of Seoul Women's University) ;
  • Kim, Jun-Soo (Department of Forest Environment and Resources, Graduate School of Science & Technology, Kyungpook National University) ;
  • Lee, Jung-Hyo (National Institute of Environmental Research) ;
  • Lee, Heon-Ho (Department of Forest Resources, Yeungnam University) ;
  • Ma, Ho-Seob (Division of Environment Forest Science, Gyeongsang National University) ;
  • Lee, Chang-Seok (Faculty of Environment and Life Sciences, Seoul Women's University) ;
  • Cho, Hyun-Je (Korea Green Promotion Agency) ;
  • Bae, Kwan-Ho (Faculty of Ecology & Environment system, Kyungpook National University)
  • 투고 : 2009.01.21
  • 심사 : 2009.02.18
  • 발행 : 2009.03.31

초록

아까시나무 임분은 우리나라 저지대에 주로 조성되어 있는 도입종 조림지로서, 인위적 또는 자연적 교란, 그리고 입지조건에 의해 온전한 숲의 종조성을 나타내지 못하고 있으며, 천이가 느리거나 정체되어 있다. 또한 그것의 개체들이 인접 자연림으로 침투하고 있는 문제점이 있다. 따라서, 아까시나무 임분에서의 천이를 촉진시켜 자연 식생을 회복시킬 필요가 있다. 복원 실험은 경상북도 포항시 용흥동의 아까시나무 임분에서 작은 숲틈(${\sim}57m^2$)을 조성하여 실시하였고, $5 m{\times}5m$ 방형구 내에서, 벌채 및 하층 식생 제거(CU), 벌채(C), 환상박피 및 하층 식생 제거(GU), 환상박피 (G) 및 대조구(Control)의 5개 실험구를 3반복으로 설치하였다. 각 처리구 별 수관 열림도(%), 빛(total estimated transmitted light, $mol{\cdot}m^{-1}{\cdot}day^{-1}$), 목표 종(졸참나무)의 생장(직경, 높이 및 엽면적)을 측정하였다. 하층식생의 반응(종조성 및 종다양성)은 각 처리구에 영구 소방형구를 설치하여 측정하였고, 피도변화, Multiresponse Permutation Procedures (MRPP) 및 Detrended Correspondence Analysis(DCA)를 통하여 분석하였다. 숲틈 조성 후, 광환경은 처리구 별로 뚜렷한 차이를 나타내지 않았고, 수관 열림도는 CU, C, GU, G, Control의 순으로 높았다. 졸참나무 유묘의 생존은 수고 및 엽면적 생장과 유의한 상관을 나타내었다. 목표 종의 생장은 대조구와 비교하여 처리 후 증가하였다. 하층식생의 종조성 및 종다양성은 유의한 변화를 나타내지 않았지만, 후자의 경우 약간 감소하였고, 각 소방형구의 총 피도는 약간 증가하였다. 아까시나무림에 대한 생태적 복원의 한 방법으로서 작은 규모의 숲틈을 조성한 결과, 급격한 환경 변화를 발생시키지 않았고, 수고 생장을 촉진할 수 있는 가능성을 나타내었다. 복원 교란에 대한 하층식생의 반응은 연구지역의 특성을 반영하는 것으로 생각된다. 본 연구의 결과는 장기적인 관찰이 필요하며, 최소한의 교란을 통한 삼림 관리 및 복원 기법으로 발전할 수 있는 가능성을 보였다.

Black locust (Robinia pseudoacacia) stand is representative lowland exotic plantation with low ecological quality and arrested succession in South Korea. To facilitate succession and restore natural vegetation, small canopy gaps (${\sim}57m^2$), which can modify minimally structural variables and reduce restoration related disturbances on stand, was established in the black locust stand, and oak (Quercus serrata) seedlings were introduced in the gap. Two types of varying levels were introduced for gap creation; cutting (C) and girdling (G) on canopies. Understory removal (CU and GU) treatment was applied as subtypes of structural modification. Growth (diameter, height and leaf area) of target species and responses (species composition, diversity and coverage) of understory community were monitored during study years (2007~2008). Canopy openness was different significantly among treatments but not for light availability. Based on the result of logistic regression, growth of height and leaf area of seedlings were significant variables on seedling survival. Height and leaf area of seedlings were increased during study years, although radial growth was reduced. During study years, there were no significant differences in species composition and diversity, and total coverage increased about 20%. Increase of resources by gap creation and understory removal likely affect growth of target species. Small gap creation was effective to reduce understory responses in composition and diverstiy. Synthesized, growth of target species and responses of understory community to small canopy gap creation exhibited, in short term, possibility of utilization in alternative forest restoration and management option. Long-term monitoring is necessary to certificate effect of artificial gap creation on forest restoration.

키워드

과제정보

연구 과제 주관 기관 : 산림청

참고문헌

  1. 국립수목원. 2004. 한국식물도해도감 1 -벼과. 국립수목원, 포천시. pp. 520
  2. 김영환, 이돈구. 2000. 소나무 묘목의 Gap 내 생장 및 생리적 적응과정. 한국임학회지 89: 452-460
  3. 김종원, 이율경. 2006. 식물사회학적 식생조사와 평가방법. 월드사이언스, 서울
  4. 동북아산림포럼. 2000. 한국의 산림과 임업. 동북아산림포럼, 서울. pp. 351
  5. 산림청. 2003. 국가표준식물목록시스템. http://www.koreaplants.go.kr:9101/(2009. 1. 1)
  6. 신현철. 2006. 리기다소나무 조림지에서 확인된 생태적복원의 효과. 서울여자대학교 석사학위논문, 서울. pp. 42
  7. 윤충원, 오승환, 이영근, 홍성천, 김재헌. 2001. 인접 임분의 종류, 계층 구조 및 식생단위에 따른 아까시나무의 이입에 관한 연구. 한국임학회지 90: 227-235
  8. 이창복. 1999. 대한식물도감. 향문사, 서울. pp. 990
  9. 임록재. 1996. 조선식물지. 과학기술출판사. pp. 311
  10. 정인구. 1979. 영일이암지대 식생불생육지의 토양성질에 관한 연구. 한국임학회 하계 학술연구논문발표요지 pp. 87-88
  11. 조광진, 김종원. 2005. 아까시나무림의 군락분류와 군락생태. 한국생태학회지 28: 15-23
  12. 조도순. 1992. 광릉 자연림에서의 교란체제와 수목의 재생. 한국생태학회지 15: 395-410
  13. 조현제. 2005. 영일사방사업지 산림식생의 조성적 특성과 천이경향. 한국임학회지 94: 453-461
  14. 홍성천. 1982. 영일사방사업지의 삼림생태학적 연구. 한국임학회지 58: 41-47
  15. Abe, H., Masaki, T. and Nakashizuka, T. 1995. Factors influencing sapling composition in canopy gaps of a temperate deciduous forest. Vegetatio 120: 21-32
  16. Baek, M.S. and Cho, D.S. 1996. An Experimental Study on the Comparison of the Establishment and Growth of Seedlings among Three Oak Species. Korean Journal of Ecology 19: 125-139
  17. Beese, W.J. and Bryant, A.A. 1999. Effect of alternative silvicultural systems on vegetation and bird communities in coastal montane forest of British Columbia, Canada. Forest Ecology and Management 115: 231-242 https://doi.org/10.1016/S0378-1127(98)00402-2
  18. Biondini, M.E., Mielke, Jr. P.W. and Berry K.J. 1988. Data-dependent permutation techniques for the analysis of ecological data. Plant Ecology 75: 161-168
  19. Boring, L.R. and Monk, C.D. 1981. Early regeneration of a clear-cut southern Appalachian forest. Ecology 62: 1244-1253 https://doi.org/10.2307/1937289
  20. Boring, L.R. and Swank, W.T. 1984. The role of black locust (Robinia pseudoacacia) in forest succession. Journal of ecology 72: 749-766 https://doi.org/10.2307/2259529
  21. Busing, R.T. and White, P.S. 1997. Species diversity and small-scale disturbance in an old-growth temperate forest:a consideration of gap partitioning concepts. Oikos 78:562-568 https://doi.org/10.2307/3545618
  22. Chapman, A.G. 1935. The Effects of Black Locust on Associated Species with Special Reference to Forest Trees. Ecological Monographs 5: 37-60 https://doi.org/10.2307/1943097
  23. Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31:343-366 https://doi.org/10.1146/annurev.ecolsys.31.1.343
  24. Cho, H.J., Cho, Y.C. and Lee, C.S. 2006. Degradation of Lowland Forest Landscape and Management Strategy to Improve Ecological Quality in Mt. Baekja and Its Surroundings. Journal of Ecology and Field Biology 29: 445-452 https://doi.org/10.5141/JEFB.2006.29.5.445
  25. Cho, Y.C. 2009. Restoration ecological assessment and improvement plan on a large scale afforestation practiced at the Young-il, southeastern Korea. PhD Dissertation, Seoul Women's University, Seoul
  26. Cho, Y.C., Shin, H.C., Kim, S.S. and Lee, C.S. 2007. Dynamics and Conservation of the Gwangneung National Forest in Central Korea: A National Model for Forest Restoration. Plant Biology 615-625 https://doi.org/10.1007/BF03030604
  27. Choi, Y.D. 2004. Theories for ecological restoration in changing environment: toward 'futuristic' restoration. Ecological Research 19: 75-81 https://doi.org/10.1111/j.1440-1703.2003.00594.x
  28. Choi, Y.D., Temperton, V.M., Allen, E.B., Grootjans, A.P., Halassy, M., Hobbs, R.J., Naeth, M.A. and Torok, K. 2008. Ecological restoration for future sustainability in a changing environment. Ecoscience 15: 53-64 https://doi.org/10.2980/1195-6860(2008)15[53:ERFFSI]2.0.CO;2
  29. Clinton, B.D. 2003. Light, temperature, and soil moisture response to elevation, evergreen understory, and small canopy gaps in the southern Appalachians. Forest Ecology and Management 186: 243-255 https://doi.org/10.1016/S0378-1127(03)00277-9
  30. Coates, D.K. and Burton, O.J. 1997. A gap-based approach for development of silvicultural systems to address ecosystem management objectives. Forest Ecology and Management 99: 337-354 https://doi.org/10.1016/S0378-1127(97)00113-8
  31. Collins, B.S. and Pickett, T.A. 1987. Influence of canopy opening on the environment and herb layer in a northern hardwood forest. Vegetatio 70: 3-10
  32. Cuno, J.B. 1930. Utilization of black locust. USDA Circular no 131
  33. D'Antonio, C. and Meyerson, L.A. 2002. Exotic plant species as problems and solutions in ecological restoration:a synthesis. Restoration Ecology 10: 703-713 https://doi.org/10.1046/j.1526-100X.2002.01051.x
  34. de Chantal, M., Leinonen, K., Kuuluvainen, T. and Cescatti, A. 2003. Early response of Pinus sylvestris and Picea abies seedlings to an experimental canopy gap in a boreal spruce forest. Forest Ecology and Management 176: 321-336 https://doi.org/10.1016/S0378-1127(02)00273-6
  35. Frazer, G.W., Canham, C.D. and Lertzman, K.P. 1999. Gap light analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Frazer University, Burnaby, BC, and the Institute of Ecosystem Studies, Millbrook, NY. pp. 40
  36. Halpern, C.B. 1989. Early successional patterns of forest species: interactions of life history traits and disturbance. Ecology 70: 704-720 https://doi.org/10.2307/1940221
  37. Halpern, C.B. and Spies, T.A. 1995. Plant species diversity in natural and managed forests of the Pacific Northwest. Ecological Applications 5: 913-934 https://doi.org/10.2307/2269343
  38. Halpern, C.B., Evans, S.A., Nelson, C.R., McKenzie, D., Liguori, D.A., Hibbs, D.E. and Halaj, M.G. 1999. Response of forest vegetation to varying levels and patterns of green-tree retention: an overview of a long-term experiment. Northwest Science 72: 27-44 (special issue)
  39. Halpern, C.B., McKenzie, D., Evans, S.A. and Maguire, D.A. 2005. Initial responses of forest understories to varying levels and patterns of green-tree retention. Ecological Applications 15: 175-195 https://doi.org/10.1890/03-6000
  40. Haugo, R.D. and Halpern, C.B. 2007. Vegetation responses to conifer encroachment in a dry, montane meadow: a chronosequence approach. Canadian Journal of Botany 85: 285-298 https://doi.org/10.1139/B07-024
  41. Hibbs, D.E. 1982. Gap dynamics in a hemlock-hardwood forest. Canadian Journal of Forest Research 12: 522-527 https://doi.org/10.1139/x82-081
  42. Hill, M.O. and Gauch, Jr. H.G. 1980. Detrended correspondence analysis: an improved ordination technique Vegetatio 42: 47-58 https://doi.org/10.1007/BF00048870
  43. Hobbs, R.J. 2000. Land use changes and invasions. pp. 55-64 In: Invasive Species in a Changing World. Island Press, Washington, DC
  44. Inman, F.M., Wentworth, T.R., Groom, M., Brownie, C. and Lea, R. 2007. Using artificial canopy gaps to restore Puerto Rican Parrot (Amazona vittata) habitat in tropical timber plantations. Forest Ecology and Management 243:169-177 https://doi.org/10.1016/j.foreco.2007.02.003
  45. Jalonen, J. and Vanha-Majamaa. I. 2001. Immediate effects of four different felling methods on mature boreal spruce forest understory vegetation in southern Finland. Forest Ecology and Management 146: 25-34 https://doi.org/10.1016/S0378-1127(00)00446-1
  46. Lee, C.S., Cho, H.J. and Yi, H. 2004. Stand dynamics of introduced black locust (Robinia pseudoacacia L.) plantation under different disturbance regimes in Korea. Forest Ecology and Management 189: 281-293 https://doi.org/10.1016/j.foreco.2003.08.012
  47. Masaki, T., Suzuki, W., Niiyama, K., Iida, S., Tanaka, H. and Nakashizuka, T. 1992. Community structure of a species-rich temperate forest, Ogawa Forest Reserve, central Japan. Vegetatio 98: 97-111 https://doi.org/10.1007/BF00045549
  48. Matsuda, K. 1989. Survival and Growth of Konara Oak (Quercus Serrata Thunb.) Seedlings in an Abandoned Coppice Forest. Ecological Research 4: 309-321 https://doi.org/10.1007/BF02348451
  49. McAlpine, K.G. and Drake, D.R. 2002. The effects of small-scale environmental heterogeneity on seed germination in experimental treefall gaps in New Zealand. Plant Ecology 165: 207-215 https://doi.org/10.1023/A:1022247707932
  50. McCune, B. and Grace, J.B. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon, U.S.A. pp. 304
  51. McCune, B. and Mefford, M.J. 1999. PC-ORD. Version 4.0. Multivariate analysis of ecological data. MjM Soft ware Design, Gleneden Beach, Oregon, U.S.A
  52. Moore, M.R. and Vankat, J.L. 1986. Responses of the herb layer to the gap dynamics of mature beech-maple forest. American Midland Naturalist 115: 336-347 https://doi.org/10.2307/2425870
  53. Nagaike, T. 2002. Differences in plant species diversity between conifer (Larix kaempferi) plantations and broadleaved (Quercus crispula) secondary forests in central Japan. Forest Ecology and Management 168: 111-123 https://doi.org/10.1016/S0378-1127(01)00734-4
  54. North, M., Chen, J., Smith, G., Krakowiak, L. and Franklin, J. 1996. Initial response of understory plant diversity and overstory tree diameter growth to a green tree retention harvest. Northwest Science 70: 24-35
  55. Runkle J.R. 1992. Guidelines and Sample Protocol for Sampling Forest Gaps. USDA Forest Service PNW-GTR-283
  56. Runkle, J.R. 1979. Gap phase dynamics in climax mesic forests. PhD Dissertation, Cornell University, Ithaca, New York, USA
  57. Runkle, J.R. 1985. Disturbance regimes in temperate forest. pp. 17-33. In: S.T.A. Pickett and P.S. White eds. The Ecology of Natural Disturbance and Patch dynamics. Academic Press, New York, U.S.A
  58. Schumann, M.E., White, A.S. and Witham, J.W. 2003. The effect of harvest-created gaps on plant diversity, composition, and abundance in a Maine oak-pine forest. Forest Ecology and Management 176: 543-561 https://doi.org/10.1016/S0378-1127(02)00233-5
  59. Shea, K. and Chesson, P. 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution 17: 170-176 https://doi.org/10.1016/S0169-5347(02)02495-3
  60. Van Der Meer, P. and Dignan, P. 2007. Regeneration after 8 years in artificial canopy gap in Mountain Ash (Eucalyptus regnans F. Muell.) forest in south-eastern Australia. Forest Ecology and Management 244: 102-111 https://doi.org/10.1016/j.foreco.2007.03.055
  61. Watt, A.S. 1947. Pattern and process in the plant community. Journal of ecology 35: 1-22 https://doi.org/10.2307/2256497
  62. Yamamoto, S. 1992. The Gap Theory in Forest Dynamics. Journal of Plant Research 105: 375-383 https://doi.org/10.1007/BF02489426
  63. Zhu, J.J., Matsuzaki, T., Lee, F.Q. and Gonda, Y. 2003. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest. Forest Ecology and Management 182: 339-354 https://doi.org/10.1016/S0378-1127(03)00094-X