DOI QR코드

DOI QR Code

Fibrolytic Rumen Bacteria: Their Ecology and Functions

  • 발행 : 2009.01.01

초록

Among rumen microbes, bacteria play important roles in the biological degradation of plant fiber due to their large biomass and high activity. To maximize the utilization of fiber components such as cellulose and hemicellulose by ruminant animals, the ecology and functions of rumen bacteria should be understood in detail. Recent genome sequencing analyses of representative fibrolytic bacterial species revealed that the number and variety of enzymes for plant fiber digestion clearly differ between Fibrobacter succinogenes and Ruminococcus flavefaciens. Therefore, the mechanism of plant fiber digestion is also thought to differ between these two species. Ecology of individual fibrolytic bacterial species has been investigated using pure cultures and electron microscopy. Recent advances in molecular biology techniques complement the disadvantages of conventional techniques and allow accurate evaluation of the ecology of specific bacteria in mixed culture, even in situ and in vivo. Molecular monitoring of fibrolytic bacterial species in the rumen indicated the predominance of F. succinogenes. Nutritive interactions between fibrolytic and non-fibrolytic bacteria are important in maintaining and promoting fibrolytic activity, mainly in terms of crossfeeding of metabolites. Recent 16S rDNA-based analyses suggest that presently recognized fibrolytic species such as F. succinogenes and two Ruminococcus species with fibrolytic activity may represent only a small proportion of the total fibrolytic population and that uncultured bacteria may be responsible for fiber digestion in the rumen. Therefore, characterization of these unidentified bacteria is important to fully understand the physiology and ecology of fiber digestion. To achieve this, a combination of conventional and modern techniques could be useful.

키워드

참고문헌

  1. Barros, M. E. C. and J. A. Thomson. 1987. Cloning and expression in Escherichia coli of a cellulase gene from Ruminococcus flavefaciens. J. Bacteriol. 169:1760-1762
  2. Bryant, M. P. 1959. Bacterial species of the rumen. Bacteriol. Rev. 23:125-153
  3. Cheng, K.-J., J. P. Fay, R. E. Howarth and J. W. Costerton. 1980. Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl. Environ. Microbiol. 40:613-625 https://doi.org/10.1016/0377-8401(90)90054-C
  4. Cheng, K.-J., J. P. Fay, R. N. Coleman, L. P. Milligan and J. W. Costerton. 1981. Formation of bacterial microcolonies on feed particles in the rumen. Appl. Environ. Microbiol. 41:298-305 https://doi.org/10.1016/0377-8401(90)90054-C
  5. Cheng, K.-J., C. S. Stewart, D. Dinsdale and J. W. Costerton. 1983/84. Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120 https://doi.org/10.1016/0377-8401(84)90002-6
  6. Cheng, K. J., C. W. Forsberg, H. Minato and J. W. Costerton. 1991. Microbial ecology and physiology of feed degradation within the rumen. In: Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the Seventh International Symposium on Ruminant Physiology (Ed. T. Tsuda, Y. Sasaki and R. Kawashima). pp. 595-624. Academic Press, New York
  7. Czerkawski, J. W. and K.-J. Cheng. 1988. Compartmentation in the rumen. In: The Rumen Microbial Ecosystem. (Ed. P. N. Hobson). pp. 361-385. Elsevier Science Publishing, London
  8. Dijkstra, B. J. and S. Tamminga. 1995. Simulation of the effects of diet on the contribution of rumen protozoa to degradation of fibre in the rumen. Br. J. Nutr. 74:617-634 https://doi.org/10.1079/BJN19950166
  9. Edwards, J. E., N. R. McEwan, A. J. Travis and R. J. Wallace. 2004. 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek. 86:263-281 https://doi.org/10.1023/B:ANTO.0000047942.69033.24
  10. Flint, H. J., C. A. McPherson and J. Bisset. 1989. Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiol. Lett. 51:231-236
  11. Flint, H. J. 1997. The rumen microbial ecosystem-some recent developments. Trends Microbiol. 5:483-488 https://doi.org/10.1016/S0966-842X(97)01159-1
  12. Flint, H. J., E. A. Bayer, M. T. Rincon, R. Lamed and B. A. White. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6:121-131 https://doi.org/10.1038/nrmicro1817
  13. Fondevila, M. and B. A. Dehority. 1996. Interaction between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J. Anim. Sci. 74:678-684 https://doi.org/10.1016/S0377-8401(98)00234-X
  14. Gong, J., R. Y. C. Lo and C. W. Forsberg. 1989. Molecular cloning and expression in Escherichia coli of a cellodextrinase gene from Bacteroides succinogenes S85. Appl. Environ. Microbiol. 55:132-136
  15. Goto, H., H. Yabuki, T. Shinkai and Y. Kobayashi. 2006. Quantification and visualization of the uncultured bacterial group U2 and U3 from the rumen. Reprod. Nutr. Dev. 46 (Suppl. 1):S16
  16. Gaudet, G. and B. Gaillard. 1987. Vesicle formation and cellulose degradation in Bacteroides succinogenes cultures: ultrastrucrural aspects. Arch. Microbiol. 148:150-154 https://doi.org/10.1007/BF00425364
  17. Hespell, R. B., D. E. Akin and B. A. Dehoriy. 1997. Bacteria, fungi, and protozoa of the rumen. In: Gastrointestinal microbiology, vol 2, (Ed. R. I. Mackie, B. A. White and R. E. Isaacson). pp. 59-141. Chapman and Hall, New York
  18. Jun, H. S., M. Qi, J. K. Ha and C. W. Forsberg. 2007. Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium: transition to the post genomic era. Asian-Aust. J. Anim. Sci. 20:802-810
  19. Kawai, S., H. Honda, T. Tanase, M. Taya, S. Iijima and T. Kobayashi. 1987. Molecular cloning of Ruminococcus albus cellulase gene. Agric. Biol. Chem. 51:59-63 https://doi.org/10.1271/bbb1961.51.59
  20. Kobayashi, Y. 2006. Inclusion of novel bacteria in rumen microbiology: Need for basic and applied science. Anim. Sci. J. 77:375-385 https://doi.org/10.1111/j.1740-0929.2006.00362.x
  21. Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003a. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy. Sci. 86:1429-1435 https://doi.org/10.3168/jds.S0022-0302(03)73726-6
  22. Koike, S., S. Yoshitani, Y. Kobayashi and K. Tanaka. 2003b. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol. Lett. 229:23-30 https://doi.org/10.1016/S0378-1097(03)00760-2
  23. Koike, S., H. Yabuki and Y. Kobayashi. 2007. Validation and application of real-time polymerase chain reaction assays for representative rumen bacteria. Anim. Sci. J. 78:135-141 https://doi.org/10.1111/j.1740-0929.2007.00417.x
  24. Kudo, H., K. J. Cheng and J. W. Costerton. 1987. Interaction between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 33:244-248 https://doi.org/10.1139/m87-041
  25. Latham, M. J., B. E. Brooker, G. L. Pettipher and P. J. Harris. 1978a. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35:156-165
  26. Latham, M. J., B. E. Brooker, G. L. Pettipher and P. J. Harris. 1978b. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35:1166-1173
  27. Leschine, S. B. 1995. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 49:399-426 https://doi.org/10.1146/annurev.mi.49.100195.002151
  28. McAllister, T. A., H. D. Bae, G. A. Jones and K.-J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018
  29. McGavin, M., C. W. Forgberg, B. Crosby, A. W. Bell, D. Dignard and D. Y. Thomas. 1989. Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. J. Bacteriol. 170:5587-5589
  30. Michalet-Doreau, B., I. Fernandez and G. Fonty. 2002. A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. J. Anim. Sci. 80:790-796
  31. Minato, H. and T. Suto. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 24:1-16 https://doi.org/10.2323/jgam.24.1
  32. Minato, H., M. Mitsumori and K.-J. Cheng. 1993. Attachment of microorganisms to solid substrate in the rumen. In: Genetics, Biochemistry and Ecology of Lignocellulose Degradation, (Ed. K. Shimada, S. Hoshino, K. Ohmiya, K. Sakka, Y, Kobayashi and S. Karita). pp. 139-145. Uni Publishers, Tokyo
  33. Morrison, M. and J. Miron. 2000. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pilproteins? FEMS Microbiol. Lett. 185:109-115
  34. Morrison, M., K. E. Neslon, I. Cann, C. W. Forsberg, R. I. Mackie, J. B. Russell, B. A. White, D. B. Wilson, K. Amaya, B. Cheng, S. Qi, H.-S. Jun, S. Mulligan, K. Tran, H. Carty, H. Khouri, W. Nelson, S. Daugherty and K. Tran. 2003. The Fibrobacter succinogenes strain S85 sequencing project. 3rd ASM-TIGR, Microbial Genome Meeting, New Orleans
  35. Mosoni, P., G. Fonty and P. Gouet. 1997. Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Curr. Microbiol. 35:44-47 https://doi.org/10.1007/s002849900209
  36. Odenyo, A. A., R. I. Mackie, D. A. Stahl and B. A. White. 1994. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl. Environ. Microbiol. 60:3688-3696
  37. Ohara, H., S. Karita, T. Kimura, K. Sakka and K. Ohmiya. 2000. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem. 64:254-260 https://doi.org/10.1271/bbb.64.254
  38. Ohmiya, K., K. Nagashima, T. Kajino, E. Goto, A. Tsukada and S. Shimizu. 1988. Cloning of the cellulase gene from Ruminococcus albus and its expression in Escherichia coli. Appl. Environ. Microbiol. 54:1511-1515
  39. Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). pp. 140-195. Blackie Academic and Professional Publishers, London
  40. Osborne, J. M. and B. A. Dehority. Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultured of ruminal bacteria. Appl. Environ. Microbiol. 55:2247-2250
  41. Pegden, R. S., M. A. Larson, R. J. Grant and M. Morrison. 1998. Adherence of the Gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J. Bacteriol. 180:5921-5927
  42. Ramšak, A., M. Peterka, K. Tajima, J. C. Martin, J. Wood, M. E. A. Johnson, R. I. Aminov, H. J. Flint and G. Avgustin. 2000. Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol. Ecol. 33:69-79 https://doi.org/10.1111/j.1574-6941.2000.tb00728.x
  43. Rincon, M. T., T. Čepeljnik, J. C. Martin, R. Lamed, Y. Barak, E. A. Bayer and H. J. Flint. 2005. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J. Bacteriol. 187:7569-7578 https://doi.org/10.1128/JB.187.22.7569-7578.2005
  44. Roger, V., G. Fonty, S. Komisarczuk-Bony and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081-3087
  45. Russell, J. B. 1985. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl. Environ. Microbiol. 49:572-576
  46. Sawanon, S., T. Shinkai, S. Koike, Y. Kobayashi and K. Tanaka. 2003. Indication of a novel group of Selenomonas ruminantium with high cellulase and fiber-attaching activities from the rumen. In: Biotechnology of Lignocellulose Degradation and Biomass Utilization (Ed. K. Ohmiya, K. Sakka, S. Karita, T. Kimura, M. Sakka and Y. Onishi). pp. 363-368. Uni Publishers, Tokyo
  47. Sawanon, S. and Y. Kobayashi. 2006. Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and noncellulolytic Selenomonas ruminantium: Evidence in defined cultures. Anim. Sci. J. 77:208-214 https://doi.org/10.1111/j.1740-0929.2006.00339.x
  48. Scheifinger, C. C. and M. J. Wolin. 1973. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl. Microbiol. 26:789-795
  49. Schwarz, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56:634-649 https://doi.org/10.1007/s002530100710
  50. Shi, Y., C. L. Odt and P. J. Weimer. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl. Environ. Microbiol. 63:734-742
  51. Shinkai, T. and Y. Kobayashi. 2007a. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Appl. Environ. Microbiol. 73:1646-1652 https://doi.org/10.1128/AEM.01896-06
  52. Shinkai, T., N. Matsumoto and Y. Kobayashi. 2007b. Ecological characterization of three different phylogenetic groups belonging to the cellulolytic bacterial species Fibrobacter succinogenes in the rumen. Anim. Sci. J. 78:503-511 https://doi.org/10.1111/j.1740-0929.2007.00469.x
  53. Sipat, A., K. A. Taylor, R. Y. C. Lo, C. W. Forsberg and P. J. Krell. 1987. Molecular cloning of xylanase from Bacteroides succinogenes and its expression in Escherichia coli. Appl. Environ. Microbiol. 53:477-481
  54. Stevenson, D. M. and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75:165-174 https://doi.org/10.1007/s00253-006-0802-y
  55. Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). pp. 10-72. Blackie Academic and Professional Publishers, London
  56. Sung, H. G., Y. Kobayashi, J. Chang, A. Ha, I. H. Hwang and J. K. Ha. 2007. Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Aust. J. Anim. Sci. 20:200-207
  57. Ton-That, H., L. A. Marraffini and O. Schneewind. 2004. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta. 1694:269-278 https://doi.org/10.1016/j.bbamcr.2004.04.014
  58. Uyeno, Y., Y. Sekiguchi, K. Tajima, A. Takenaka, M. Kurihara and Y. Kamagata. 2007. Evaluation of group-specific, 16S rRNAtargeted scissor probes for quantitative detection of predominant bacterial populations in dairy cattle rumen. J. Appl. Microbiol. 103:1995-2005 https://doi.org/10.1111/j.1365-2672.2007.03443.x
  59. Van Soest, P. J. 1982. Nutritional Ecology of the Ruminant. O&B Books, Corvallis
  60. Varel, V. H. and B. A. Dehority. 1989. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Appl. Environ. Microbiol. 55:148-153
  61. Weimer, P. J., G. C. Waghorn, C. L. Odt and D. R. Mertens. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy Sci. 82:122-134 https://doi.org/10.3168/jds.S0022-0302(99)75216-1
  62. White, B. A. 1988. Genetic engineering of ruminal microorganisms discussed. Foodstuffs. Apr. 18:14-16
  63. Williams, A. G. and N. H. Strachan. 1984. Polysaccharide degrading enzymes in microbial populations from the liquid and solid fractions of bovine rumen digesta. Can. J. Anim. Sci. 64:58-59 https://doi.org/10.4141/cjas84-156
  64. Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa. In:The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). pp. 73-139. Blackie Academic and Professional Publishers, London
  65. Wolin, M. J., T. L. Miller and C. S. Stewart. 1997. Microbemicrobe interactions. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). pp. 467-491. Blackie Academic and Professional Publishers, London
  66. Wood, T. M., C. A. Wilson and C. S. Stewart. 1982. Preparation of cellulase from the cellulolytic anaerobic bacterium Ruminococcus albus and its release from the bacterial cell wall. Biochem. J. 205:129-137
  67. Yu, Z., M. Yu and M. Morrison. 2006. Improved serial analysis of V1 ribosomal sequence sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition. Environ. Microbiol. 8:603-611 https://doi.org/10.1111/j.1462-2920.2005.00933.x

피인용 문헌

  1. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage vol.112, pp.6, 2012, https://doi.org/10.1111/j.1365-2672.2012.05295.x
  2. The Fibrobacteres: an Important Phylum of Cellulose-Degrading Bacteria vol.63, pp.2, 2012, https://doi.org/10.1007/s00248-011-9998-1
  3. High-throughput Methods Redefine the Rumen Microbiome and Its Relationship with Nutrition and Metabolism vol.8, pp.1177-9322, 2014, https://doi.org/10.4137/BBI.S15389
  4. Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing vol.119, pp.6, 2015, https://doi.org/10.1111/jam.12958
  5. Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria vol.197, pp.2, 2015, https://doi.org/10.1007/s00203-014-1049-0
  6. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0126-4
  7. Microorganisms in the rumen and reticulum of buffalo (Bubalus bubalis) fed two different feeding systems vol.9, pp.1, 2016, https://doi.org/10.1186/s13104-016-2046-y
  8. Alterations in the Rumen Liquid-, Particle- and Epithelium-Associated Microbiota of Dairy Cows during the Transition from a Silage- and Concentrate-Based Ration to Pasture in Spring vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00744
  9. Monensin and Nisin Affect Rumen Fermentation and Microbiota Differently In Vitro vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01111
  10.  OS14, newly isolated from the rumen of swamp buffalo pp.13443941, 2017, https://doi.org/10.1111/asj.12927
  11. Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep1 vol.89, pp.3, 2011, https://doi.org/10.2527/jas.2010-2947
  12. The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers1 vol.92, pp.2, 2014, https://doi.org/10.2527/jas.2013-7072
  13. Buccal Swabbing as a Noninvasive Method To Determine Bacterial, Archaeal, and Eukaryotic Microbial Community Structures in the Rumen vol.81, pp.21, 2015, https://doi.org/10.1128/AEM.02385-15
  14. Diauxic growth of Fibrobacter succinogenes S85 on cellobiose and lactose vol.364, pp.15, 2017, https://doi.org/10.1093/femsle/fnx150
  15. Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows vol.100, pp.4, 2017, https://doi.org/10.3168/jds.2016-11994
  16. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency pp.1949-0984, 2018, https://doi.org/10.1080/19490976.2018.1505176
  17. The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02285
  18. Quantitative qPCR Analysis of Ruminal Microorganisms in Beef Cattle Grazing in Pastures in the Rainy Season and Supplemented with Different Protein Levels vol.75, pp.8, 2018, https://doi.org/10.1007/s00284-018-1484-2
  19. Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in Rusitec vol.98, pp.4, 2015, https://doi.org/10.3168/jds.2014-8751
  20. The Use of Quantitative Real Time Polymerase Chain Reaction to Quantify Some Rumen Bacterial Strains in anIn VitroRumen System vol.12, pp.3, 2013, https://doi.org/10.4081/ijas.2013.e58
  21. Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen vol.88, pp.3, 2014, https://doi.org/10.1111/1574-6941.12318
  22. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis vol.6, pp.None, 2009, https://doi.org/10.3389/fmicb.2015.00297
  23. Ruminal Bacterial Diversity of Yaks (Bos Grunniens) Fed by Grazing or Indoor Regime on the Tibetan Plateau by Analysis of165 rRNAGene Libraries vol.14, pp.4, 2009, https://doi.org/10.4081/ijas.2015.3970
  24. Effects of oregano essential oil on the ruminal pH and microbial population of sheep vol.14, pp.5, 2009, https://doi.org/10.1371/journal.pone.0217054
  25. Effects of energy sources and inclusion levels of concentrate in sugarcane-silage-based diets of finishing Nellore young bulls: Nutrient digestibility, rumen metabolism and ecosystem vol.157, pp.4, 2009, https://doi.org/10.1017/s0021859619000534
  26. Isolation and Characterization of Potential Cellulose Degrading Bacteria from Sheep Rumen vol.13, pp.3, 2019, https://doi.org/10.22207/jpam.13.3.60
  27. Selection of plant oil as a supplemental energy source by monitoring rumen profiles and its dietary application in Thai crossbred beef cattle vol.32, pp.10, 2019, https://doi.org/10.5713/ajas.18.0946
  28. Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes vol.20, pp.1, 2009, https://doi.org/10.1186/s13059-019-1786-0
  29. Archaea in the microbial community of the reindeer rumen in the Russian Arctic vol.27, pp.None, 2020, https://doi.org/10.1051/bioconf/20202700066
  30. Change of Endoglucanase Activity and Rumen Microbial Community During Biodegradation of Cellulose Using Rumen Microbiota vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.603818
  31. Genomic and gene expression evidence of nonribosomal peptide and polyketide production among ruminal bacteria: a potential role in niche colonization? vol.96, pp.2, 2009, https://doi.org/10.1093/femsec/fiz198
  32. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli vol.8, pp.6, 2009, https://doi.org/10.3390/microorganisms8060877
  33. Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review vol.8, pp.3, 2009, https://doi.org/10.3390/vaccines8030460
  34. Repeated inoculation with fresh rumen fluid before or during weaning modulates the microbiota composition and co-occurrence of the rumen and colon of lambs vol.20, pp.None, 2009, https://doi.org/10.1186/s12866-020-1716-z
  35. Characteristics of various fibrolytic isozyme activities in the rumen microbial communities of Japanese Black and Holstein Friesian cattle under different conditions vol.92, pp.1, 2021, https://doi.org/10.1111/asj.13653
  36. The structure and functional profile of ruminal microbiota in young and adult reindeers (Rangifer tarandus) consuming natural winter-spring and summer-autumn seasonal diets vol.9, pp.None, 2009, https://doi.org/10.7717/peerj.12389
  37. Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw vol.269, pp.None, 2021, https://doi.org/10.1016/j.envpol.2020.116130
  38. Cellulolytic and xylanolytic faecal bacteria from tedong bonga, [Toraja buffalo, Bubalus bubalis carabanesis] vol.741, pp.1, 2021, https://doi.org/10.1088/1755-1315/741/1/012064
  39. Metagenomic Discovery and Characterization of Multi-Functional and Monomodular Processive Endoglucanases as Biocatalysts vol.11, pp.11, 2009, https://doi.org/10.3390/app11115150
  40. Tuber flours improve intestinal health and modulate gut microbiota composition vol.12, pp.None, 2021, https://doi.org/10.1016/j.fochx.2021.100145
  41. Effect of tannins from tropical plants on methane production from ruminants: A systematic review vol.14, pp.None, 2009, https://doi.org/10.1016/j.vas.2021.100214