DOI QR코드

DOI QR Code

SH2D4A regulates cell proliferation via the ERα/PLC-γ/PKC pathway

  • Li, Tingting (Department of Medical Genetics, China Medical University) ;
  • Li, Wei (Department of Medical Genetics, China Medical University) ;
  • Lu, Jingyu (Department of Medical Genetics, China Medical University) ;
  • Liu, Hong (Department of Medical Genetics, China Medical University) ;
  • Li, Yinghui (Department of Medical Genetics, China Medical University) ;
  • Zhao, Yanyan (Department of Medical Genetics, China Medical University)
  • Published : 2009.08.31

Abstract

SH2D4A, comprising a single SH2 domain, is a novel protein of the SH2 signaling protein family. We have previously demonstrated SH2D4A is expressed ubiquitously in various tissues and is located in the cytoplasm. In this study we investigated the function of SH2D4A in human embryonic kidney (HEK) 293 cells using interaction analysis, cell proliferation assays, and kinase activity detection. SH2D4A was found to directly bind to estrogen receptor $\alpha$ (ER$\alpha$), and prevent the recruitment of phospholipase C-$\gamma$ (PLC-$\gamma$) to ER$\alpha$. Moreover, we observed its inhibitory effects on estrogen-induced cell proliferation, involving the protein kinase C (PKC) signaling pathway. Together, these findings suggested that SH2D4A inhibited cell proliferation by suppression of the ER$\alpha$/PLC-$\gamma$/PKC signaling pathway. SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.

Keywords

References

  1. Dai, S., Zhao, Y. and Ding, Q. (2002) A novel member of SH(2) signaling protein family: cloning and characterization of SH(2)A gene. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 19, 458-462
  2. Ding, Q., Zhao, Y. Y., Sun, Z. J. and Yu, D. H. (2003) Effect of SH2A gene in cell signal transduction and subcellular localization. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 20, 499-503
  3. Moran, M. F., Koch, C. A., Anderson, D., Ellis, C., England, L., Martin, G. S. and Pawson, T. (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Natl. Acad. Sci. U.S.A. 87, 8622- 8626 https://doi.org/10.1073/pnas.87.21.8622
  4. Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G. F., Gibbons, F. D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D. S., Zhang, L. V., Wong, S. L., Franklin, G., Li, S., Albala, J. S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R. S., Vandenhaute, J., Zoghbi, H. Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M. E., Hill, D. E., Roth, F. P. and Vidal M. (2005) Towards a proteome-scale map of the human protein- protein interaction network. Nature 437, 1173-1178 https://doi.org/10.1038/nature04209
  5. Ewing, R. M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., McBroom-Cerajewski, L., Robinson, M. D., O'Connor, L., Li, M., Taylor, R., Dharsee, M., Ho, Y., Heilbut, A., Moore, L., Zhang, S., Ornatsky, O., Bukhman, Y. V., Ethier, M., Sheng, Y., Vasilescu, J., Abu-Farha, M., Lambert, J. P., Duewel, H. S., Stewart, I. I., Kuehl, B., Hogue, K., Colwill, K., Gladwish, K., Muskat, B., Kinach, R., Adams, S. L., Moran, M. F., Morin, G. B., Topaloglou, T. and Figeys, D. (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89焊돐倩?⨀塨?⨀健잖⨀䤊돐灥잖⨀?잖⨀硥잖⨀ℊ덐补잖⨀ 樀
  6. Lapinski, P. E., Oliver, J. A., Kamen, L. A., Hughes, E. D., Saunders, T. L. and King, P. D. (2008) Genetic analysis of SH2D4A, a novel adapter protein related to T cell-specific adapter and adapter protein in lymphocytes of unknown function, reveals a redundant function in T cells. J. Immunol. 181, 2019-2027 https://doi.org/10.4049/jimmunol.181.3.2019
  7. Arnold, S. F., Obourn, J. D., Jaffe, H. and Notides, A. C. (1995) Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol. Endocrinol. 9, 24-33 https://doi.org/10.1210/me.9.1.24
  8. Kumar, V., Green, S., Stack, G., Berry, M., Jin, J. R. and Chambon, P. (1987) Functional domains of the human estrogen receptor. Cell 51, 941-951 https://doi.org/10.1016/0092-8674(87)90581-2
  9. Endoh, H., Sasaki, H., Maruyama, K., Takeyama, K., Waga, I., Shimizu, T., Kato, S. and Kawashima, H. (1997) Rapid activation of MAP kinase by estrogen in the bone cell line. Biochem. Biophys. Res. Commun 235, 99-102 https://doi.org/10.1006/bbrc.1997.6746
  10. Di Domenico, M., Castoria, G., Bilancio, A., Migliaccio, A. and Auricchio, F. (1996) Estradiol activation of human colon carcinoma-derived Caco-2 cell growth. Cancer Res. 56, 4516-4521
  11. Kahlert, S., Nuedling, S., van Eickels, M., Vetter, H., Meyer, R. and Grohe, C. (2000) Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J. Biol. Chem. 275, 18447-18453 https://doi.org/10.1074/jbc.M910345199
  12. Migliaccio, A., Castoria, G., Di Domenico, M., de Falco, A., Bilancio, A., Lombardi, M., Barone, M. V., Ametrano, D., Zannini, M. S., Abbondanza, C. and Auricchio, F. (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J. 19, 5406-5417 https://doi.org/10.1093/emboj/19.20.5406
  13. Song, R. X., McPherson, R. A., Adam, L., Bao, Y., Shupnik, M., Kumar, R. and Santen, R. J. (2002) Linkage of rapid estrogen action to MAPK activation by ERalpha-Shc association and Shc pathway activation. Mol. Endocrinol. 16, 116-127 https://doi.org/10.1210/me.16.1.116
  14. Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B. and Cantley, L. C. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767-778 https://doi.org/10.1016/0092-8674(93)90404-E
  15. Li, S. C., Gish, G., Yang, D., Coffey, A. J., Forman-Kay, J. D., Ernberg, I., Kay, L. E. and Pawson, T. (1999) Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A. Curr. Biol. 9, 1355- 1362 https://doi.org/10.1016/S0960-9822(00)80080-9
  16. Sayos, J., Wu, C., Morra, M., Wang, N., Zhang, X., Allen, D., van Schaik, S., Notarangelo, L., Geha, R., Roncarolo, M.G., Oettgen, H., De Vries, J. E., Aversa, G. and Terhorst, C. (1998) The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462-469 https://doi.org/10.1038/26683
  17. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. and Germain, R. N. (2008) SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764-769 https://doi.org/10.1038/nature07345
  18. Migliaccio, A., Di Domenico, M., Castoria, G., de Falco, A., Bontempo, P., Nola, E. and Auricchio, F. (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol- receptor complex in MCF-7 cells. EMBO J. 15, 1292-1300
  19. Haynes, M. P., Li, L., Sinha, D., Russell, K. S., Hisamoto, K., Baron, R., Collinge, M., Sessa, W. C. and Bender, J. R. (2003) Src kinase mediates phosphatidylinositol 3-kinase/ Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen. J. Biol. Chem. 278, 2118-2123 https://doi.org/10.1074/jbc.M210828200
  20. Brubaker, K. D. and Gay, C. V. (1999) Estrogen stimulates protein tyrosine phosphorylation and Src kinase activity in avian osteoclasts. J. Cell Biochem. 76, 206-216
  21. Marino, M., Distefano, E., Caporali, S., Ceracchi, G., Pallottini, V. and Trentalance, A. (2001) beta-estradiol stimulation of DNA synthesis requires different PKC isoforms in HepG2 and MCF7 cells. J. Cell Physiol. 188, 170-177 https://doi.org/10.1002/jcp.1105
  22. Marino, M., Acconcia, F., Bresciani, F., Weisz, A. and Trentalance, A. (2002) Distinct nongenomic signal transduction pathways controlled by 17 beta-estradiol regulate DNA synthesis and cyclin D1 gene transcription in HepG2 cells. Mol. Biol. Cell 13, 3720-3729 https://doi.org/10.1091/mbc.E02-03-0153
  23. Castoria, G., Barone, M.V., Di Domenico, M., Bilancio, A., Ametrano, D., Migliaccio, A. and Auricchio, F. (1999) Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. EMBO J. 18, 2500-2510 https://doi.org/10.1093/emboj/18.9.2500
  24. Marino, M., Distefano, E., Trentalance, A. and Smith, C. L. (2001) Estradiol-induced IP (3) mediates the estrogen receptor activity expressed in human cells. Mol. Cell Endocrinol. 182, 19-26 https://doi.org/10.1016/S0303-7207(01)00556-1
  25. Marino, M., Pallottini, V. and Trentalance, A. (1998) Estrogens cause rapid activation of IP3-PKC-alpha signal transduction pathway in HEPG2 cells. Biochem. Biophys. Res. Commun. 245, 254-258 https://doi.org/10.1006/bbrc.1998.8413
  26. Alfonso, B., Orsolina, P., Andrea, D. L., Mariarosa, A. B. M., Sabrina, M., Mario, C. and Gianfranco, P. (2001) 17-beta estradiol elicits an autocrine leiomyoma cell proliferation: evidence for a stimulation of protein kinase-dependent pathway. J. Cell Physiol. 186, 414-424 https://doi.org/10.1002/1097-4652(2000)9999:999<000::AID-JCP1040>3.0.CO;2-E
  27. Song, R. X., Barnes, C. J., Zhang, Z., Bao, Y., Kumar, R. and Santen, R. J. (2004) The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc. Natl. Acad. Sci. U.S.A 101, 2076-2081 https://doi.org/10.1073/pnas.0308334100
  28. Anderson, D., Koch, C. A., Grey, L., Ellis, C., Moran, M. F. and Pawson, T. (1990) Binding of SH2 domains of phospholipase C-gamma, GAP, and Src to activated growth factor receptors. Science 250, 979-982 https://doi.org/10.1126/science.2173144
  29. Kim, H. K., Kim, J. W., Zilberstein, A., Margolis, B., Kim, J. G., Schlessinger, J. and Rhee, S. G. (1991) PDGF stimulation of inositol phospholipid hydrolysis requires PLCgamma phosphorylation on tyrosine residues 783 and 1254. Cell 65, 435-441 https://doi.org/10.1016/0092-8674(91)90461-7
  30. Paul, M., James, F. W., Barbara, C. V., Benjamin, K. T. and Jean, S. (1992) A New, Nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology 131, 1305-1312 https://doi.org/10.1210/en.131.3.1305
  31. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4

Cited by

  1. Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression vol.112, pp.15, 2015, https://doi.org/10.1073/pnas.1403685112
  2. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells vol.11, pp.16, 2011, https://doi.org/10.1002/pmic.201100036
  3. Chromosome 8p tumor suppressor genes SH2D4A and SORBS3 cooperate to inhibit interleukin-6 signaling in hepatocellular carcinoma vol.64, pp.3, 2016, https://doi.org/10.1002/hep.28684
  4. SH2D4A is frequently downregulated in hepatocellular carcinoma and cirrhotic nodules vol.50, pp.4, 2014, https://doi.org/10.1016/j.ejca.2013.11.018