Interfacial Properties of Imidazoline Cationic Surfactant

Imidazoline 양이온 계면활성제의 계면 특성

  • Kim, Ji Sung (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lim, Jong Choo (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 김지성 (동국대학교 공과대학 화공생물공학과) ;
  • 임종주 (동국대학교 공과대학 화공생물공학과)
  • Received : 2008.12.19
  • Accepted : 2009.01.07
  • Published : 2009.02.28

Abstract

In this study, interfacial properties were measured for imidazoline type cationic surfactant system which has been widely used as a fabric softener, a dispersant, an anti-static agent, a bleach activator, and an emulsifier. The CMC of imidazoline surfactant was near $6{\times}10^{-5}mol/L$ and the surface tension at CMC was about 32 mN/m. It was found that surface tension was not affected by surfactant concentration but decreased with an increase in pH. The interfacial tension between 1 wt% aqueous solution and n-dodecane was shown to be about 0.01 mN/m and equilibration time was not affected by pH. Phase behavior experiment in a binary aqueous surfactant system showed that only micellar solution of $L_1$ phase was found under conditions of temperature and pH investigated during this study. Only a two-phase region consisting of lower-phase microemulsion in equilibrium with excess oil phase existed under the same conditions, when oil was added to the binary surfactant system. The foam stability measured with 1 wt% surfactant solution increased with pH, which is consistent with surface tension measurement result. QCM(quartz crystal microbalance) measurement showed that surfactant adsorption increased with surfactant concentration but decreased with pH. According to the friction measurement, best fabric softening effect by imidazoline surfactant system was found under alkali conditions.

본 연구에서는 섬유 유연제, 분산제, 대전방지제, 표백 활성제, 유화제 등으로 널리 사용되고 있는 이미다졸린 양이온 계면활성제의 계면 특성을 측정하였다. 계면활성제의 CMC는 약 $6{\times}10^{-5}mol/L$ 이고 CMC에서의 표면장력은 약 32 mN/m이며, 또한 이미다졸린 계면활성제의 표면장력은 계면활성제 농도에 관계없이 비교적 일정하고, 일정한 계면활성제 농도 조건 하에서 수용액의 pH가 증가하면 표면장력은 감소하였다. 1 wt% 계면활성제 수용액과 n-dodecane 오일 사이의 계면장력은 약 0.01 mN/m이고 평형에 도달하는 시간은 pH에 관계없이 거의 일정하였다. $30{\sim}60^{\circ}C$ 의 온도 범위에서 계면활성제 수용액은 pH에 관계없이 마이셀 수용액의 $L_1$만을 형성하였고 계면활성제-물-오일로 이루어진 3성분 시스템은 lower phase 마이크로에멀젼을 포함한 2상 영역만이 존재하였다. 1 wt% 계면활성제 수용액의 거품 안정성은 수용액의 pH가 증가할수록 증가하며, 이러한 결과는 pH가 증가함에 따라 1 wt% 계면활성제의 표면장력이 감소하는 결과와 일관된 경향을 나타내었다. QCM(quartz crystal microbalance) 측정에 의하면 계면활성제 흡착은 농도 증가에 따라 증가하며, pH 증가에 따라 감소하였다. 또한 마찰 계수 측정으로부터 수용액의 pH가 알칼리 조건 하에서 이미다졸린 양이온 계면활성제의 섬유 유연 효과가 가장 우수함을 알 수 있었다.

Keywords

References

  1. McBain, M. E. L. and Hutchinson, E., Solubilization and Related Phenomena, Academic Press, New York(1955)
  2. Oh, S. G., Kim, J. G. and Kim, J. D., "Phase Behavior and Solubilization of 1-Hexanol in the Water-Continuous Phases Containing Surface-Active Compounds," Korean J. Chem. Eng., 4(1), 53-59(1987) https://doi.org/10.1007/BF02698099
  3. Park, S. J., Yoon, H. H. and Song, S. K., "Solubilization and Micellar-Enhanced Ultrafiltration of o-Cresol by Sodium Dodecyl Sulfate Micelles," Korean J. Chem. Eng., 14(4), 233-240(1997) https://doi.org/10.1007/BF02706817
  4. Su, Y. L. and Liu, H. Z., "Temperature-Dependent Solubilization of PEO-PPO-PEO Block Copolymers and Their Application for Extraction Trace Organics from Aqueous Solutions," Korean J. Chem. Eng., 20(2), 343-346(2003) https://doi.org/10.1007/BF02697250
  5. Baek, K., Lee, H. H., Cho, H. J. and Yang, J. W., "Headspace Solid-Phase Microextraction for Determination of Micellar Solubilization of Methyl Tert-Butyl Ether(MTBE)," Korean J. Chem. Eng., 20(4), 698-701(2003) https://doi.org/10.1007/BF02706910
  6. Cutler, W. G. and Kissa, E., Detergency: Theory and Technology Marcel Dekker, New York(1987)
  7. Kim, J. S., Park, J. S. and Lim, J. C., 'Measurement of Isoelectric Point of Betaine Zwitterionic Surfactant by QCM,' Accepted for Publication at Korean J. Chem. Eng., (2008)
  8. Kim, J. S., Park, J. S. and Lim, J. C., 'Measurement of Isoelectric Point of Amine Oxide Zwitterionic Surfactant by QCM,' Accepted for Publication at J. Kor. Ind. Eng. Chem, (2008)
  9. Miller, C. A. and Neogi, P., Interfacial Phenomena: Equilibrium and Dynamic Effects, Marcel Dekker, New York(1985)
  10. Cross, J. and Singer, E. J., Cationic Surfactants, Marcel Dekker, New York(1994)
  11. Takano, S. and Tsuji, T., "Analysis of Cationic and Amphoteric Surfactants: III. Structural Analysis of Imidazolinium Cationic Surfactants," JAOCS, 60(4), 870-874(1983) https://doi.org/10.1007/BF02787452
  12. Takano, S. and Tsuji, T., "Analysis of Cationic and Amphoteric Surfactants: V. Structural Analysis of the Amphoteric Surfactants Obtained by the Reaction of 1-(2-Hydroxyethyl)-2-Alkyl-2-Imidazoline with Ethyl Acrylate," JAOCS, 60(10), 1798-1806(1983) https://doi.org/10.1007/BF02680359
  13. Takano, S. and Tsuji, T., "Analysis of Cationic and Amphoteric Surfactants: V. Structural Analysis of the Amphoteric Surfactants Obtained by the Reaction of 1-(2-Hydroxyethyl)-2-Alkyl-2-Imidazoline with Sodium Monochloroacetate," JAOCS, 60(10), 1807-1815(1983) https://doi.org/10.1007/BF02680360
  14. Huber, L. H., "Ecological Behavior of Cationic Surfactants from Fabric Softeners in the Aquatic Environment," JAOCS, 61(2), 377-382(1984) https://doi.org/10.1007/BF02678797
  15. Ro, Y. C. and Nam, K. D., 'Chemical Structural Characteristics of the Amphoteric Imidazoline Surfactants,' J. Kor. Ind. Eng. Chem., 5(5), 749-755(1994)
  16. Ro, Y. C., Lee, S. J. and Nam, K. D., 'Synthesis and Surface Active Properties of Amphoteric Surfactant Derivatives(5)-Basic Properties of Derivatives from Imidazoline-,' J. Kor. Ind. Eng. Chem., 6(4), 548-555(1995)
  17. Levinson, M. I., "Rinse-Added Fabric Softener Technology at the Close of the Twentieth Century," J. Surfact. Deterg., 2(2), 223-235(1999) https://doi.org/10.1007/s11743-999-0077-4
  18. Oh, J. H., 'Study on the Micellization of Cetyltrimethylammonium Bromide in Diol Solution,' J. Kor. Ind. Eng. Chem., 11(1), 80-86(2000)
  19. Friedli, F. E., Keys, R., Toney, C. J., Portwood, O., Whittlinger, D. and Doerr, M., "Novel New Ester Quaternaries for Improved Performance Benefits as Rinse Cycle Fabric Softeners," J. Surfact. Deterg., 4(4), 401-405(2001) https://doi.org/10.1007/s11743-001-0194-0
  20. Earl, G. W., Weisshaar, D. E., Paulson, D., Hanson, M., Uilk, J., Wineinger, D. and Moeckly, S., "Quaternary Methyl Carbonates: Novel Agents for Fabric Conditioning," J. Surfact. Deterg., 8(4) 325-329(2005) https://doi.org/10.1007/s11743-005-0363-1
  21. Mishra, S. and Tyagi, V. K., "Synthesis and Performance Properties of Cationic Fabric Softeners Derived from Different Fatty Acids and 1(2 Hydroxyethylpiperazine)," J. Surfact. Deterg., 11(2), 167-173(2008) https://doi.org/10.1007/s11743-008-1067-5
  22. Bistline, R. G., Hampson, J. W. and LinField, W. M., "Synthesis and Properties of Fatty Imidazolines and Their N-(2-Aminoethyl) Derivatives," JAOCS, 60(4), 823-828(1983) https://doi.org/10.1007/BF02787436
  23. Bak, H. S., Choi, K. Y., Lee, J. D., Kim, Y. K. and Ahn, H. J., 'Analysis of Imidazoline Type Cationic Surfactants,' J. Kor. Ind. Eng. Chem., 9(3), 404-406(1998)
  24. Trubnikova, L. I., "Chemical Reactions of Surfactants with Acid-Base Dyes and Determination of Imidazolines in the Air of the Working Area," J. Analytical Chemistry, 56(3), 243-248(2001) https://doi.org/10.1023/A:1009402406102
  25. Shi, S. C., Wang, X. Y., Yi, P. G., Cao, C. Z., Deng, T. T. and Su, J. S., "Influence of Alkyl Group of Imidazolinyl-Quaternary-Ammonium-Salt on Corrosion Inhibition Efficiency," J. Central South Univ. of Tech., 13(4), 393-398(2006) https://doi.org/10.1007/s11771-006-0055-z
  26. Lisitskii, V. V., Akhmetchenko, Z. A., Alekhina, I. E. and Murinov, Y. I., 'Hydrolysis of 2-Substituted and 1,2-Disubstituted Imidazolines,' Russian J. Applied Chem., 80(5), 782-797(2007) https://doi.org/10.1134/S107042720705014X
  27. Bajpai, D. and Tyagi, V. K., "Microwave Synthesis of Cationic Fatty Imidazolines and their Characterization," J. Surfact. Deterg., 11(1), 79-87(2008) https://doi.org/10.1007/s11743-007-1057-z
  28. Nilsson, P. G., Pacynko, W. F. and Tiddy, G. J. T., "Clouding in Zwitterionic Surfactant/Water Systems – The Influence of Additives on the Upper Consolute Loop of the Decyldimethylammonioethane Sulfate/Water System," Current Opinion Colloid Int. Sci., 9(1-2), 117-123(2004) https://doi.org/10.1016/j.cocis.2004.05.015
  29. Limin, Z., Ganzuo, L. and Zhiwei, S., "Spontaneous Vesicle Formation in Aqueous Solution of Zwitterionic and Anionic Surfactant Mixture," Colloid Surf. A: Physicochem. Eng. Aspects, 190, 275-283(2001) https://doi.org/10.1016/S0927-7757(01)00693-8
  30. Kim, J. S. and Lim, J. C., Unpublished Data
  31. Park, J. S. and Lim, J. C., 'Investigation on a Zwitterionic Surfactant Having Ethylene Oxide,' Applied Chem., 10(2), 605-608 (2006)
  32. Han, D. S., Yoo, K. M., Park, J. S., Chi, G. Y., Lee, K. M., Cho, I. S. and Lim, J. C., 'Development of Multi-functional Amine Oxide Type Surfactants,' Applied Chem., 11(1), 229-232(2007) https://doi.org/10.1002/jctb.5010110701
  33. Chiu, T. Y. and James, A. E., "Microfiltration of Amphoteric Surfactant Using Ceramic Membranes," Colloid Surf. A: Physicochem, Eng. Aspects, 280(1-3), 58-65(2006) https://doi.org/10.1016/j.colsurfa.2006.01.030