DOI QR코드

DOI QR Code

Inhibitory effects of honokiol on LPS and PMA-induced cellular responses of macrophages and monocytes

  • Lee, Sang-Yeol (Department of Life Science, College of Natural Sciences, Kyungwon University) ;
  • Cho, Jae-Youl (School of Bioscience and Biotechnology, and the Institute of Bioscience and Biotechnology, Kangwon National University)
  • Published : 2009.09.30

Abstract

The regulatory effects of honokiol on the cellular responses of macrophages and monocytes were evaluated. Specifically, we investigated the effects of honokiol with respect to lipopolysaccharide (LPS)-induced cytotoxicity, LPS- or phorbol-12-myristate-13-acetate (PMA)-mediated morphological changes, and relevant events (FITC-dextran-induced phagocytic uptake). Honokiol blocked the LPS-induced cytotoxicity of RAW264.7 cells in a dose-dependent manner. In addition, honokiol appeared to block the production of cytotoxic cytokines such as interleukin (IL)-$1{\beta}$ and tumor necrosis factor (TNF)-$\alpha$, nitric oxide (NO), and reactive oxygen species (ROS). Moreover, honokiol strongly prevented the morphological changes in RAW 264.7 and U937 cells that were induced by LPS and PMA. The surface levels of marker proteins, which are up-regulated under the morphological changes of RAW264.7 and U937 cells, were also diminished. The data presented here strongly suggest that the honokiol modulates various cellular responses managed by macrophages and monocytes.

Keywords

References

  1. Rotstein, O. D. (2001) Peritoneal host defenses: modulation by carbon dioxide insufflation. Surg. Infect (Larchmt). 2, 163-168; discussion 168-170 https://doi.org/10.1089/109629601750469483
  2. Kedzierska, K. and Crowe, S. M. (2001) Cytokines and HIV-1: interactions and clinical implications. Antivir. Chem. Chemother. 12, 133-150 https://doi.org/10.1177/095632020101200301
  3. Hanna, M. G. Jr. (1974) Immunologic aspects of BCGmediated regression of established tumors and metastases in guinea pigs. Semin. Oncol. 1, 319-335
  4. Han, K. Y., Kwon, T. H., Lee, T. H., Lee, S. J., Kim, S. H. and Kim, J. (2008) Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells. BMB Rep. 41, 328-333
  5. Shen, C. C., Ni, C. L., Shen, Y. C., Huang, Y. L., Kuo, C. H., Wu, T. S. and Chen, C. C. (2009) Phenolic constituents from the stem bark of Magnolia officinalis. J. Nat. Prod. 72, 168-171 https://doi.org/10.1021/np800494e
  6. Fried, L. and Arbiser, J. L. (2009) Honokiol, A multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal. (In press)
  7. Lin, Y. R., Chen, H. H., Ko, C. H. and Chan, M. H. (2006) Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. Eur. J. Pharmacol. 537, 64-69 https://doi.org/10.1016/j.ejphar.2006.03.035
  8. Lin, Y. R., Chen, H. H., Ko, C. H. and Chan, M. H. (2007) Effects of honokiol and magnolol on acute and inflammatory pain models in mice. Life Sci. 81, 1071-1078 https://doi.org/10.1016/j.lfs.2007.08.014
  9. Kim, B. H. and Cho, J. Y. (2008) Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression. Acta Pharmacol Sin. 29, 113-122 https://doi.org/10.1111/j.1745-7254.2008.00725.x
  10. Tse, A. K., Wan, C. K., Shen, X. L., Yang, M. and Fong, W. F. (2005) Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochem. Pharmacol. 70, 1443-1457 https://doi.org/10.1016/j.bcp.2005.08.011
  11. Sampath, V., Radish, A. C., Eis, A. L., Broniowska, K., Hogg, N. and Konduri, G. G. (2009) Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia. Free Radic. Biol. Med. 46, 663-671 https://doi.org/10.1016/j.freeradbiomed.2008.12.008
  12. Matsuda, H., Kageura, T., Oda, M., Morikawa, T., Sakamoto, Y. and Yoshikawa, M. (2001) Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages. Chem. Pharm. Bull. (Tokyo) 49, 716-720 https://doi.org/10.1248/cpb.49.716
  13. Son, H. J., Lee, H. J., Yun-Choi, H. S. and Ryu, J. H. (2000) Inhibitors of nitric oxide synthesis and TNF-alpha expression from Magnolia obovata in activated macrophages. Planta. Med. 66, 469-471 https://doi.org/10.1055/s-2000-8592
  14. Dikalov, S., Losik, T. and Arbiser, J. L. (2008) Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochem. Pharmacol. 76, 589-596 https://doi.org/10.1016/j.bcp.2008.06.012
  15. Park, E. J., Kim, S. Y., Zhao, Y. Z. and Sohn, D. H. (2006) Honokiol reduces oxidative stress, c-jun-NH2-terminal kinase phosphorylation and protects against glycochenodeoxycholic acid-induced apoptosis in primary cultured rat hepatocytes. Planta. Med. 72, 661-664 https://doi.org/10.1055/s-2006-931571
  16. Lee, J. Y., Kim, J. Y., Lee, Y. G., Rhee, M. H., Hong, E. K. and Cho, J. Y. (2008) Molecular mechanism of macrophage activation by Exopolysaccharides from liquid culture of Lentinus edodes. J. Microbiol. Biotechnol. 18, 355-364
  17. Ahn, E., Luk, A., Mezody, M., Horlick, E., Ross, H. and Butany, J. (2009) Early morphological changes of an Amplatzer Septal Occluder explanted at heart transplant. Cardiovasc. Pathol. 18, 57-60 https://doi.org/10.1016/j.carpath.2007.08.007
  18. Lasunskaia, E. B., Campos, M. N., de Andrade, M. R., Damatta, R. A., Kipnis, T. L., Einicker-Lamas, M. and Da Silva, W. D. (2006) Mycobacteria directly induce cytoskeletal rearrangements for macrophage spreading and polarization through TLR2-dependent PI3K signaling. J. Leukoc Biol. 80, 1480-1490 https://doi.org/10.1189/jlb.0106066
  19. Cho, J. Y., Baik, K. U., Jung, J. H. and Park, M. H. (2000) In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur. J. Pharmacol. 398, 399-407 https://doi.org/10.1016/S0014-2999(00)00337-X
  20. Ding, M., Zhang, M., Wong, J. L., Rogers, N. E., Ignarro, L. J. and Voskuhl, R. R. (1998) Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice. J. Immunol. 160, 2560-2564
  21. Bai, X. C., Lu, D., Liu, A. L., Zhang, Z. M., Li, X. M., Zou, Z. P., Zeng, W. S., Cheng, B. L. and Luo, S. Q. (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J. Biol. Chem. 280, 17497-17506 https://doi.org/10.1074/jbc.M409332200
  22. Lee, Y. G., Kim, J. Y., Lee, J. Y., Byeon, S. E., Hong, E. K., Lee, J., Rhee, M. H., Park, H. J. and Cho, J. Y. (2007) Regulatory effects of Codonopsis lanceolata on macrophage-mediated immune responses. J. Ethnopharmacol. 112, 180-188 https://doi.org/10.1016/j.jep.2007.02.026
  23. Cho, J. Y., Fox, D. A., Horejsi, V., Sagawa, K., Skubitz, K. M., Katz, D. R. and Chain, B. (2001) The functional interactions between CD98, beta1-integrins, and CD147 in the induction of U937 homotypic aggregation. Blood 98, 374-382 https://doi.org/10.1182/blood.V98.2.374

Cited by

  1. Honokiol: an effective inhibitor of high-glucose-induced upregulation of inflammatory cytokine production in human renal mesangial cells vol.59, pp.12, 2010, https://doi.org/10.1007/s00011-010-0227-z
  2. Herbacetin inhibits inducible nitric oxide synthase via JNK and nuclear factor-κB in LPS-stimulated RAW264.7 cells vol.765, 2015, https://doi.org/10.1016/j.ejphar.2015.08.032
  3. Honokiol: an effective inhibitor of tumor necrosis factor- -induced up-regulation of inflammatory cytokine and chemokine production in human synovial fibroblasts vol.43, pp.5, 2011, https://doi.org/10.1093/abbs/gmr027
  4. Honokiol blocks store operated calcium entry in CHO cells expressing the M3 muscarinic receptor: honokiol and muscarinic signaling vol.20, pp.1, 2013, https://doi.org/10.1186/1423-0127-20-11
  5. Comparative metabolism of honokiol in mouse, rat, dog, monkey, and human hepatocytes vol.39, pp.4, 2016, https://doi.org/10.1007/s12272-016-0731-y
  6. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation vol.9, pp.1, 2012, https://doi.org/10.1186/1742-2094-9-57
  7. Cyanine fluorophores for cellular protection against ROS in stimulated macrophages and two-photon ROS detection vol.13, pp.26, 2015, https://doi.org/10.1039/C5OB00643K
  8. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols vol.559, 2014, https://doi.org/10.1016/j.abb.2014.06.006
  9. Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation vol.37, pp.3, 2011, https://doi.org/10.1007/s00134-010-2104-1
  10. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-α and COX-2, in mouse RAW264.7 macrophages vol.32, pp.2, 2011, https://doi.org/10.1016/j.peptides.2010.11.004
  11. Inhibitory effects of honokiol on lipopolysaccharide-induced cellular responses and signaling events in human renal mesangial cells vol.654, pp.1, 2011, https://doi.org/10.1016/j.ejphar.2010.11.022
  12. Anti-inflammatory effects of eriodictyol in lipopolysaccharidestimulated raw 264.7 murine macrophages vol.34, pp.4, 2011, https://doi.org/10.1007/s12272-011-0418-3
  13. Preparation and Characterization of Antioxidant Nanoparticles Composed of Chitosan and Fucoidan for Antibiotics Delivery vol.12, pp.8, 2014, https://doi.org/10.3390/md12084379