PSII를 이용한 마그네슘 이온 주입 임플란트에 대한 MC3T3-E1 골모양 세포 반응 연구

Cell study on the Magnesium ion implanted surface with PSII

  • 신형주 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 김대곤 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 박찬진 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 이희수 (강릉원주대학교 치과대학 구강해부학교실 및 구강과학연구소) ;
  • 차민상 (울산대학교 의과대학 강릉아산병원 치과보철학교실)
  • Shin, Hyeong-Joo (Department of Prsothodontics, College of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Dae-Gon (Department of Prsothodontics, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Chan-Jin (Department of Prsothodontics, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Lee-Ra (Department of Prsothodontics, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Hee-Su (Department of oral Anatomy, College of Dentistry, Gangneung-Wonju National University) ;
  • Cha, Min-Sang (Department of Prosthetic Dentistry, Gangneung Asan Hospital, College of Medicine, University of Ulsan)
  • 투고 : 2009.09.25
  • 심사 : 2009.12.25
  • 발행 : 2009.12.31

초록

임플란트와 골 반응을 개선하기 위한 생화학적 표면 처리 방법으로 다양한 이온을 이용한 이온주입법에 대한 관심이 높아지고 있다. 본 연구는 플라즈마 상태의 마그네슘 이온을 임플란트 표면에 주입하여 이온 피막을 형성하는 방법으로 표면 처리를 한 임플란트에 대한 MC3T3-E1 골모양 세포의 초기 반응을 평가해 보고자 하였다. 티타늄 디스크를 네 가지 군으로 표면처리를 달리하였다. A군은 연마만 하였고 B군은 연마 후 마그네슘 이온을 주입하였다. C군은 알루미늄 입자분사 하였고, D군은 알루미늄 입자분사 후 마그네슘 이온을 주입하였다. 조골세포의 반응을 세포 부착, 증식, 분화의 단계별로 평가하였다. 세포 부착을 평가하기 위해 MC3T3-E1 골모양 세포를 4시간, 24시간, 48시간 금속 표면에서 배양하여 주사현미경으로 관찰하였다. 세포분화도평가는 세포를 4일간 배양 후 알칼리성 인산분해효소 활성도 분석을 통해 시행하였다. 세포외기질의 세포내 발현은 RT-PCR을 통해 평가하였다. 이상의 실험에서 다음과 같은 결과를 얻었다. 1. 주사현미경 관찰시 시간의 흐름에 따라 세포 부착량은 증가하였으며, 마그네슘 이온을 주입한 시편에서 더 많은 양 세포 증식이 관찰되었으며 분화정도도 더 높은 것으로 관찰되었다. 2. RT-PCR 분석시 알루미늄 입자분사 후 마그네슘 이온을 주입한 시편에서 c-fos와 osteonectin의 발현이 증가된 소견을 보였다. 3. 알칼리성 인산분해효소 활성도 분석시 금속 표면처리 방법에 따른 차이는 발생하지 않았다. 이상의 결과를 종합하면 Mg 이온이 주입된 군의 세포가 Mg 이온이 주입되지 않은 군보다 초기의 세포반응이 더 우수하다는 것을 알 수 있다.

For successful osteogenesis around the implants, interaction between implant surface and surrounding tissue is important. Biomechanical bonding and biochemical bonding are considered to influence the response of adherent cells. But the focus has shifted surface chemistry. The purpose of this study is to evaluate the MC3T3-E1 osteoblast like cell responses of magnesium (Mg) ion implanted titanium surface produced using a plasma source ion implantation method. Commercially pure titanium disc was used as substrates. The discs were prepared to produce four different surface, A: Machine turned surface, B: Mg implanted surface, C: sandblasted surface, D: sandblasted and Mg implanted surface. MC3T3 El osteoblastic like cells were cultured on the disc specimens. Cell adhesion, proliferation, differentiation, and synthesis of extracellular matrix were evaluated. The cell adhesion morphology was evaluated by SEM. RT PCR assay was used for assessment of cell adhesion, proliferation and differentiation. ALP activity was measured for cell differentiation. The results of this study were as follows: 1. SEM showed that cell on Mg ion groups was more proliferative than that of non Mg ion groups. On the machine turned surface, cell showed some degree of contact guidance in aligning with the machining grooves. 2. In RT PCR analysis, osteonectin and c-fos mRNA were more expressed on sandblasted and Mg ion implanted group. 3. ALP activity was not significantly different among all groups. Within the limitations of this study, the following conclusions were drawn: It might indicate Mg ion implanted titanium surface induce better bone response than non Mg ion groups.

키워드

과제정보

연구 과제 주관 기관 : 강릉대학교

참고문헌

  1. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res 2001;12:515-525 https://doi.org/10.1034/j.1600-0501.2001.120513.x
  2. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137- 146 https://doi.org/10.1016/0142-9612(96)85758-9
  3. Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res 1999;13:38-48 https://doi.org/10.1177/08959374990130011301
  4. Veis AA, Trisi P, Papadimitriou S, Tsirlis AT, Parissis NA, Desiris AK, Lazzara RJ. Osseointegration of Osseotite and machined titanium implants in autogenous bone graft. A histologic and histomorphometric study in dogs. Clin Oral Implants Res 2004;15:54-61 https://doi.org/10.1111/j.1600-0501.2004.01004.x
  5. Ivanoff CJ, Hallgren C, Widmark G, Sennerby L, Wennerberg A. Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans. Clin Oral Implants Res 2001;12:128-134 https://doi.org/10.1034/j.1600-0501.2001.012002128.x
  6. Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res 2002;13:252–259 https://doi.org/10.1034/j.1600-0501.2002.130304.x
  7. Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 1996;32:409-417 https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
  8. Ellingsen JE, Johansson CB, Wennerberg A, Holmen A. Improved retention and bone-to- implant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004;19:659–666
  9. Byon E, Moon S, Cho S, Jeong C, Jeong Y, Sul YT. Electrochemical property and apatite formation of metal ion implanted titanium for medical implants Surf. Coat. Technol 2005; 200: 1018-1021 https://doi.org/10.1016/j.surfcoat.2005.02.133
  10. Maitz MF, Poon RW, Liu XY, Pham MT, Chu PK. Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials 2005; 26:5465-5473 https://doi.org/10.1016/j.biomaterials.2005.02.006
  11. Johansson C, Lausmaa J, Röstlund T, Thomsen P. Commercially pure titamium and Ti6Al4V implants with and without nigrogen ion- implantation: surface characterization and quantitative studies in rabbit cortical bone. J Mater Sci-Mater Med 1993;4: 132-141 https://doi.org/10.1007/BF00120382
  12. Sawase T, Wennerberg A, Baba K, Tsuboi Y, Sennerby L, Johansson CB, Albrektsson T.Application of oxygen ion implantation to titanium surfaces: effects on surface characteristics, corrosion resistance, and bone response.Clin Implant Dent Relat Res 2001;3:221-229 https://doi.org/10.1111/j.1708-8208.2001.tb00144.x
  13. Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H, Murakami K, Asaoka K. Early bone formation around calcium-ion- implanted titanium inserted into rat tibia. J Biomed Mater Res 1997;36:131-136 https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<131::AID-JBM16>3.0.CO;2-L
  14. Mandl S, Krause D, Thorwarth G, Sader R, Zeihofer F, Horch HH, Rauschenbach B. Plasma immersion ion implantation treatment of medical implants. Surf Coat Tech 2001; 142:1046-1050 https://doi.org/10.1016/S0257-8972(01)01066-0
  15. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:175-184 https://doi.org/10.1002/jbm.10270
  16. Mould AP, Akiyama SK, Humphries MJ. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for $Mn^{2+}$,$Mg^{2+}$,and $$Ca^2^+$$. J Biol Chem 1996;270:26270-26277 https://doi.org/10.1074/jbc.270.44.26270
  17. Krause A, Cowles EA, Gronowicz G. Integrin- mediated signaling in osteoblasts on titanium implant materials. J Biomed Mater Res 2000;52: 738-747 https://doi.org/10.1002/1097-4636(20001215)52:4<738::AID-JBM19>3.0.CO;2-F
  18. Sul YT, Johansson P, Chang BS, Jeong BY. Bone tissue responses to Mg-incorporated oxidized implants and machine-turned implants in the rabbit femur. J of appl Biomaterials and Biomechanics 2005;3:18-28
  19. Cho LR, Kim DG, Kim JH, Byon ES, Jeong YS, Park CJ. Bone response of Mg ion implanted clinical implants with plasma source ion implantation method. Clin Oral Impl Res In press 2009
  20. Linez, Bataillon P, Monchau F, Bigerelle M, Hildebrand HF. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates. Biomol Eng 2002;19:133-141 https://doi.org/10.1016/S1389-0344(02)00024-2
  21. Walboomers XF, Jansen JA. Cell and tissue behavior on micro-grooved surfaces. Odontology 2001;89:2-11 https://doi.org/10.1007/s10266-001-8178-z
  22. Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996;18:451-457 https://doi.org/10.1016/8756-3282(96)00044-0
  23. Bilezikian JP, Raisz LG, Rodan GA. Principles of bone biology. San Diego: Academic press; 1996
  24. Suzuki H, Nezaki Y, Kuno E, Sugiyama I, Mizutani A, Tsukagoshi N. Functional roles of the tissue inhibitor of metalloproteinase 3 (TIMP 3) during ascorbate induced differentiation of osteoblastic MC3T3-E1 cells. Biosci Biotechnol Biochem 2003;67:1737-1743 https://doi.org/10.1271/bbb.67.1737
  25. Franceschi RT. The developmental control of osteoblast specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 1999;10:40-57 https://doi.org/10.1177/10454411990100010201
  26. Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler Moncler S, Dean DD, Schwartz Z. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1$\alpha$,25-$(OH)_2D_3$. J Biomed Mater Res 1998;39:77-85 https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L
  27. Castellani R, de Ruijter A, Renggli H, Jansen J. Response of rat bone marrow cells to differently roughened titanium discs. Clin Oral Implants Res 1999;10:369-78 https://doi.org/10.1034/j.1600-0501.1999.100504.x
  28. ter Brugge PJ, Jansen JA. Initial interaction of rat bone marrow cells with non coated and calcium phosphate coated titanium substrates. Biomaterials 2002;23:3269-3277 https://doi.org/10.1016/S0142-9612(02)00085-6
  29. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1 review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17:536-543