단일벽 탄소나노튜브 상에 석출된 산화루테늄과 루테늄-코발트 혼합산화물의 수퍼커패시터 특성

Supercapacitive Properties of RuO2 and Ru-Co Mixed Oxide Deposited on Single-Walled Carbon Nanotube

  • 고장면 (한밭대학교 응용화학생명공학부) ;
  • 김광만 (한국전자통신연구원 융합부품소재 연구부문 차세대에너지기술팀)
  • Ko, Jang Myoun (Department of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Kim, Kwang Man (Research Team of Next-Generation Energy Technology, Electronics & Telecommunications Research Institute (ETRI))
  • 투고 : 2009.01.21
  • 심사 : 2009.01.31
  • 발행 : 2009.02.28

초록

단일벽 탄소나노튜브의 표면 위에 동력학적 전위법으로 산화루테늄($RuO_2$)의 석출 및 루테늄-코발트 혼합산화물(Ru-Co mixed oxide)의 공석출에 의해 산화환원 수퍼커페시터용 복합전극을 제조하였다. 루테늄 성분이 13.13 wt%, 코발트 성분이 2.89 wt%가 석출된 Ru-Co 혼합산화물 전극은 낮은 전위 스캔속도($10\;mV\;s^{-1}$)에서는 $RuO_2$ 전극과 유사한 비용량(${\sim}620\;F\;g^{-1}$)을 나타내지만, 높은 스캔속도($500\;mV\;s^{-1}$)에서는 $RuO_2$ 전극보다 큰 비용량을 보인다. 높은 스캔 속도에서 Ru-Co 혼합산화물 전극이 비용량의 증가를 나타내는 것은 Ru 성분을 통한 전기전도성을 Co 성분이 구조적으로 지지해주기 때문이다.

Composite electrodes for redox supercapacitor were prepared potentiodynamically by the deposition of $RuO_2$ and the co-deposition of Ru-Co mixed oxide on the surface of single-walled carbon nanotube. Electrode of Ru-Co mixed oxide, in which Ru(13.13 wt%) and Co(2.89 wt%) were deposited on the carbon nanotube, exhibited a similar specific capacitance(${\sim}620\;F\;g^{-1}$) with $RuO_2$ electrode at a low potential scan rate($10\;mV\;s^{-1}$), but showed a superior one ($570\;F\;g^{-1}$) at a high scan rate($500\;mV\;s^{-1}$) than that of $RuO_2$($475\;F\;g^{-1}$). Such increase in the specific capacitance at high scan rate by the co-deposition of Ru and Co species was due to the structural support of Co species to provide the electronic conduction through Ru species.

키워드

과제정보

연구 과제 주관 기관 : 교육과학기술부

참고문헌

  1. Conway, B. E., Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, Kluwer, New York (1999)
  2. Rudge, A., Davey, J., Raistrick, I., Gottesfeld, S. and Ferraris, J. P., "Conducting Polymers as Active Materials in Electrochemical Capacitors," J. Power Sources, 47(1-2), 89-107(1994) https://doi.org/10.1016/0378-7753(94)80053-7
  3. Chen, G. Z., Shaffer, M. S. P., Coleby, D., Dixon, G., Zhou, W., Fray, D. J. and Windle, A. H., 'Carbon Nanotube and Polypyrrole Composites: Coating and Doping,' Adv. Mater., 12(1), 522-526(2000) https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO;2-S
  4. Nam, K.-W., Yoon, W.-S. and Kim, K.-B., "X-Ray Absorption Spectroscopy Studies of Nickel Oxide Thin Film Electrodes for Supercapacitors," Electrochim. Acta, 47(19), 3201-3209(2002) https://doi.org/10.1016/S0013-4686(02)00240-2
  5. Prasad, K. R. and Miura, N., "Electrochemically Deposited Nanowires of Nickel Oxides as a High-Power Pseudocapacitive Electrode," Appl. Phys. Lett., 85(18), 4199-4201(2004) https://doi.org/10.1063/1.1814816
  6. Sivakkumar, S. R., Ko, J. M., Kim, D. Y., Kim, B. C. and Wallace, G. G., "Performance Evaluation of CNT/Polypyrrole/Mn$O_2$ Composite Electrodes for Electrochemical Capacitors," Electrochim. Acta, 52(25), 7377-7385(2007) https://doi.org/10.1016/j.electacta.2007.06.023
  7. Song, R. Y., Park, J. H., Sivakkumar, S. R., Kim, S. H., Ko, J. M., Park, D.-Y., Jo, S. M. and Kim, D. Y., "Supercapacitive Properties Polyaniline/Nafion/Hydrous RuO2 Composite Electrodes," J. Power Sources, 166(1), 297-301(2007) https://doi.org/10.1016/j.jpowsour.2006.12.093
  8. Ahn, K. H., Kim, W. S., Park, Y. S., Moon, J. M., Bae, D. J., Lim, S. C., Lee, Y. S. and Lee, Y. H., "Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes," Adv. Funct. Mater., 11(5), 387-392(2001) https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
  9. Hughes, M., Shaffer, M. S. P., Renouf, A. C., Singh, C., Chen, G. Z., Fray, D. J. and Windle, A. H., "Electrochemical Capacitance of Nanocomposite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole," Adv. Mater., 14(5), 382-385 (2002) https://doi.org/10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y
  10. Chang, K.-H. and Hu, C.-C., "Coalescence Inhibition of Hydrous Ru$O_2$Crystallites Prepared by a Hydrothermal Method," Appl. Phys. Lett., 88(19), 193102(2006) https://doi.org/10.1063/1.2200154
  11. Lin, H., Ritter, J. A. and Popov, B. N., "Development of Carbon- Metal Oxide Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels," J. Electrochem. Soc., 146(9), 3155-3166(1999) https://doi.org/10.1149/1.1392448
  12. Hu, C.-C., Chen, W.-C. and Chang, K.-H., "How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors," J. Electrochem. Soc., 151(2), A281-A290(2004) https://doi.org/10.1149/1.1639020
  13. Kim, H. and Popov, B. N., "Characterization of Hydrous Ruthenium Oxide/Carbon Nanocomposite Supercapacitors Prepared by Colloidal Method," J. Power Sources, 104(1), 52-61(2002) https://doi.org/10.1016/S0378-7753(01)00903-X
  14. Ramani, M., Haran, B. S., White, R. E., Popov, B. N. and Arsov, L., "Studies on Activated Carbon Capacitor Materials Loaded with Different Amounts of Ruthenium Oxide," J. Power Sources, 93(1-2), 209-214(2001) https://doi.org/10.1016/S0378-7753(00)00575-9
  15. Park, J. H. and Park, O. O., 'Morphology and Electrochemical Behavior of Ruthenium Oxide Thin Film Deposited on Carbon Paper,' J. Power Sources, 109(1), 121-126(2002) https://doi.org/10.1016/S0378-7753(02)00053-8
  16. Lee, J. Y., An, K. H., Heo, J. K. and Lee, Y. H., "Fabrication of Supercapacitor Electrodes Using Fluorinated Single-Walled Carbon Nanotubes," J. Phys. Chem. B, 107(34), 8812-8815(2003) https://doi.org/10.1021/jp034546u
  17. Zhou, C., Kumar, S., Doyle, C. D. and Tour, J. M., “Functionalized Single Wall Carbon Nanotubes Treated with Pyrrole for Electrochemical Supercapacitor Membranes," Chem. Mater., 17(8), 1997- 2002(2005) https://doi.org/10.1021/cm047882b
  18. Gupta, V. and Miura, N., "Polyaniline/Single-Walled Carbon Nanotube( PAN/SWCNT) Composites for High Performance Supercapacitors,"Electrochim. Acta, 52(4), 1721-1726(2006) https://doi.org/10.1016/j.electacta.2006.01.074
  19. Qin, X., Durbach, S. and Wu, G. T., "Electrochemical Characterization on RuO2xH2O/Carbon Nanotubes Composite Electrodes for High Energy Density Supercapacitors," Carbon, 42(2), 451-453(2004) https://doi.org/10.1016/j.carbon.2003.11.012
  20. Ye, J.-S., Cui, H. F., Liu, X., Lim, T. M., Zhang, W.-D. and Sheu, F.-S., 'Preparation and Characterization of Aligned Carbon Nanotube- Ruthenium Oxide Nanocomposites for Supercapacitors,' Small, 5(5), 560-565(2005) https://doi.org/10.1002/smll.200400137
  21. Hu, C.-C., Chang, K.-H., Lin, M.-C. and Wu, Y.-T., “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors,” Nano Lett., 6(12), 2690-2695(2006) https://doi.org/10.1021/nl061576a
  22. Kim, I.-H., Kim, J.-H., Lee, Y.-H. and Kim, K.-B., "Synthesis and Characterization of Electrochemically Prepared Ruthenium Oxide on Carbon Nanotube Film Substrate for Supercapacitor Applications," J. Electrochem. Soc., 152(11), A2170-A2178(2005) https://doi.org/10.1149/1.2041147
  23. Lee, J.-K., Pathan, H. M., Jung, K. D. and Joo, O.-S., "Electrochemical Capacitance of Nanocomposite Films Formed by Loading Carbon Nanotubes with Ruthenium Oxide," J. Power Sources, 159(2), 1527-1531(2006) https://doi.org/10.1016/j.jpowsour.2005.11.063
  24. Sugimoto, W., Iwata, H., Yokoshima, K., Murakami, Y. and Takasu, Y., "Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance",J. Phys. Chem. B, 109(15), 7330- 7338(2005) https://doi.org/10.1021/jp044252o