DOI QR코드

DOI QR Code

Effects of Dietary Alpha-lipoic Acid on Anti-oxidative Ability and Meat Quality in Arbor Acres Broilers

  • Zhang, Y. (The National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Hongtrakul, Kittiporn (The National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Ji, C. (The National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Ma, Qiugang (The National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Liu, L.T. (College of Bioengineering, Henan University of Technology) ;
  • Hu, X.X. (The National Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
  • Received : 2009.02.08
  • Accepted : 2009.04.13
  • Published : 2009.08.01

Abstract

An experiment was conducted to evaluate the effects of dietary alpha-lipoic acid (LA) on growth performance, carcass characteristics and meat quality in Arbor Acres broilers. A total of 240 1-d-old male Arbor Acres broilers were randomly allocated to 4 dietary treatments (0, 300 ppm, 600 ppm, and 900 ppm dietary LA supplementation, respectively). Birds were slaughtered at 42 days old. Live body weight (BW), average daily gain (ADG), average feed intake (AFI), feed conversion ratio (FCR), dressing percentage, breast muscle percentage, thigh muscle percentage, abdominal fat percentage, muscle color (L*, a*, b*), pH values at 24 h postmortem, meat shear force value (SFV) and anti-oxidative ability were measured. Results showed that addition of 600 ppm or 900 ppm LA decreased BW (p<0.01), ADG (p<0.01) and AFI (p<0.05) compared with other diets. FCR was not affected by dietary LA content. LA had no marked effect on dressing percentage, breast muscle percentage or thigh muscle percentage. Abdominal fat percentage was lower (p<0.05) in the 900 ppm LA supplementation group than the control group. Dietary 900 ppm LA increased (p<0.05) breast and thigh muscle pH value at 24 h postmortem compared with the control treatment. Dietary LA increased thigh muscle a* value, though no significant difference was found in thigh muscle a* value among the treatments. Dietary LA significantly decreased breast muscle L* value (p<0.05), breast muscle b* value (p<0.01) and thigh muscle b* value (p<0.05). Broilers fed LA had higher breast muscle a* value (p<0.05) and thigh muscle L* value (p<0.05). All test groups had lower (p<0.05) breast muscle SFV than the control group. Dietary 600 ppm or 900 ppm LA both decreased (p<0.01) thigh muscle SFV compared with the control treatment. Dietary 900 ppm LA significantly increased (p<0.05) TAOC, SOD and GSHPx compared with no LA treatment. Broilers fed LA had lower (p<0.01) MDA compared with the control treatment. These results suggested that dietary LA enhanced the anti-oxidative ability and oxidative stability, and contributed to the improvement of meat quality in broilers.

Keywords

References

  1. Andersson, U., K. Filipsson, C. R. Abbott, A. Woods, K. Smith, S. R. Bloom, D. Carling and C. J. Small. 2004. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279:12005-12008 https://doi.org/10.1074/jbc.C300557200
  2. Berg, E. P., K. R. Maddock and M. L. Linville. 2003. Creatine monohydrate supplemented in swine finishing diets and fresh pork quality: III. Evaluating the cumulative effect of creatine monohydrate and alpha-lipoic acid. J. Anim. Sci. 81:2469-2474 https://doi.org/10.2527/2003.81102469x
  3. Boulianne, M. and A. J. King. 1995. Biochemical and color characteristics of skinless boneless pale chicken breast. Poult. Sci. 74:1693-1698 https://doi.org/10.3382/ps.0741693
  4. Boulianne, M. and A. J. King. 1998. Meat color and biochemical characteristics of unacceptable dark-colored broiler chicken carcasses. J. Food. Sci. 63:759-762 https://doi.org/10.1111/j.1365-2621.1998.tb17894.x
  5. Calkins, C. R., T. R. Dutson, G. C. Smith and Z. L. Carpenter. 1982. Concentrations of creatine phosphate, adenine nucleotides and their derivatives in electrically stimulated and non-stimulated beef muscle. J. Food Sci. 47:1350-1353 https://doi.org/10.1111/j.1365-2621.1982.tb07683.x
  6. Calkins, C. R. and S. C. Seideman. 1988. Relationships among calcium-dependent protease, cathepsins B and H, meat tenderness and the response of muscle to aging. J. Anim. Sci. 66:1186-1193 https://doi.org/10.2527/jas1988.6651186x
  7. Dilger, R. N., C. Martinez Amezcua, P. B. Pillai, J. L. Emmert, C. M. Parsons and D. H. Baker. 2006. Effect of Reciprocating dietary lysine fluctuations on chick growth and carcass yield. Poult. Sci. 85:1226-1231 https://doi.org/10.1093/ps/85.7.1226
  8. Fletcher, D. L. 1999. Broiler breast meat color variation, pH and meat texture. Poult. Sci. 78:1323-1327 https://doi.org/10.1093/ps/78.9.1323
  9. Goes, V. A., J. Brouwer, K. Hoekstra, D. Roos, T. K. van den Berg and C. D. Dijkstra. 1998. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J. Neuroimmunol. 92:67-75 https://doi.org/10.1016/S0165-5728(98)00175-1
  10. Goll, Darrel E., D. W. Henderson and E. A. Kline. 1964. Postmortem changes in physical and chemical properties of bovine muscle. J. Food Sci. 29:590-596 https://doi.org/10.1111/j.1365-2621.1964.tb00415.x
  11. Hamano, Y., Y. Kamota and S. Sugawara. 2000. Effects of lipic acid on plasma metabolites and metabolic response to intravenous injection of isoproterenol in broilers. Asian-Aust. J. Sci. 13:653-658 https://doi.org/10.5713/ajas.2000.653
  12. Haramaki, N., D. Han, G. J. Handelman, H. J. Tritschler and L. Packer. 1997. Cytosolic and mitochondrial systems for NADH- and NADPH-dependent reduction of alpha-lipoic acid. Free Radic. Biol. Med. 22:535-542 https://doi.org/10.1016/S0891-5849(96)00400-5
  13. Jiang, S. Q., Z. Y. Jiang, Y. C. Lin, P. B. Xi and X. Y. Ma. 2007. Effects of soy isoflavone on performance, meat quality and antioxidative property of male broilers fed oxidized fish oil. Asian-Aust. J. Anim. Sci. 20:1252-1257 https://doi.org/10.5713/ajas.2007.1252
  14. Jiang, Z. Y., S. Q. Jiang, Y. C. Lin, X. Y. Ma, P. B. Xi, T. Cao and X. Q. Wang. 2008. Effect of genistein on antioxidative defense system and membrane fluidity in chick skeletal muscle cells. Asian-Aust. J. Anim. Sci. 21:1220-1225 https://doi.org/10.5713/ajas.2008.70698
  15. Kim, M. S., J. Y. Park, C. Namkoong, P. G. Jang, J. W. Ryu, H. S. Song, J. Y. Yun, I. S. Namqoonq, J. Ha, I. S. Park, I. K. Lee, B. Viollet, J. H. Youn, H. K. Lee and K. U. Lee. 2004. Antiobesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat. Med. 10:727-733 https://doi.org/10.1038/nm1061
  16. Kowluru, R. A., S. Odenbach and S. Basak. 2005. Long-term administration of lipoic acid inhibits retinopathy in diabetic rats via regulating mitochondrial superoxide dismutase. Invest Ophthalmol. Vis. Sci. 46:422-428
  17. Lin, H., E. Decuypere and J. Buyse. 2008. Effect of thyroid hormones on the redox balance of broiler chickens. Asian-Aust. J. Anim. Sci. 21:794-800 https://doi.org/10.5713/ajas.2008.70305
  18. Lindahl, G., K. Lundstrom and E. Tornberg. 2001. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 59:141-151 https://doi.org/10.1016/S0309-1740(01)00064-X
  19. Lister, D., R. A. Sair, J. A. Will, G. R. Schmidt, R. G. Cassens, W. G.. Hoekstra and E. J. Briskey. 1970. Metabolism of striated muscle of stress-susceptible pigs breathing oxygen or nitrogen. Am. J. Physiol. 218: 102-107
  20. Liu, J. K. 2008. The Effects and Mechanisms of Mitochondrial Nutrient a-Lipoic Acid on Improving Age-Associated Mitochondrial and Cognitive Dysfunction: An Overview. Neurochem. Res. 33: 194–203 https://doi.org/10.1007/s11064-007-9403-0
  21. Maddock, E. P. Berg, C. A. Stahl, M. L. Linville and J. A. Carroll. 2001. The effects of alpha lipoic acid (LA) on performance and health of weaned neonatal pigs. J. Anim. Sci. 79 (Suppl.1): 756-764
  22. Minokoshi, Y., T. Alquier, N. Furukawa, Y. B. Kim, A. Lee, B. Z. Xue, J. Mu, F. Foufelle, P. Ferre, M. J. Birnbaum, B. J. Stuck and B. B. Kahn. 2004. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 428: 569–574 https://doi.org/10.1038/nature02440
  23. Moini, H., L. Packer and N. L. Saris. 2002. Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 182: 84–90 https://doi.org/10.1006/taap.2002.9437
  24. NRC. 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC. (SF494.N37)
  25. Packer, L., E. H. Witt and H. J. Tritschler. 1995. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med 19: 227–250 https://doi.org/10.1021/ja01129a511
  26. Packer, L., H. J. Tritschler and K. Wessel. 1997a. Neuroprotection by the metabolic antioxidant α-lipoic acid. Free Radic. Biol. Med. 22:359-378 https://doi.org/10.1016/S0891-5849(96)00269-9
  27. Packer, L., S. Roy and C. K. Sen. 1997b. Alpha-lipoic acid: a metabolic antioxidant and potential redox modulator of transcription. Adv. Pharmacol. 38:79-101 https://doi.org/10.1016/S1054-3589(08)60980-1
  28. Reed, J. K. 1973. Studies on the kinetic mechanism of lipoamide dehydrogenase from rat liver mitochondria. J. Biol. Chem. 13:4834-4839 https://doi.org/10.1016/0020-711X(80)90311-0
  29. Rentfrow, G., M. L. Linville, C. A. Stahl, K. C. Olson and E. P. Berg. 2004. The effects of the antioxidant lipoic acid on beef longissimus bloom time. J. Anim. Sci. 82:3034-3037 https://doi.org/10.2527/2004.82103034x
  30. Rosenvold, K., B. Essén-Gustavsson and H. J. Andersen. 2003. Dietary manipulation of pro- and macroglycogen in porcine skeletal muscle. J. Anim. Sci. 81:130-134 https://doi.org/10.2527/2003.811130x
  31. Rybak, L. P., K. Husain, C. Whitworth and S. M. Somani. 1999. Dose dependent protection by lipoic acid against cisplatininduced ototoxicity in rats: antioxidant defense system. Toxicological Sciences 47:195-202 https://doi.org/10.1093/toxsci/47.2.195
  32. Ryu, Y. C., M. S. Rhee, K. M. Lee and B. C. Kim. 2005. Effects of different levels of dietary supplemental selenium on performance, lipid oxidation, and color stability of broiler chicks. Poult. Sci. 84:809-815 https://doi.org/10.1093/ps/84.5.809
  33. Schmidt, T. B., K. C. Olson, PAS, D. L. Meyer, M. M. Brandt, G. K. Rentfrow, C. A. Stahl and E. P. Berg. 2005. Effects of lipoic acid supplementation on finishing steer growth performance, carcass merit, beef tenderness, and beef retail display properties. Professional Animal Scientist 21:480-485 https://doi.org/10.15232/S1080-7446(15)31253-5
  34. Sen, C. K., S. Roy, D. Han and L. Packer. 1997. Regulation of cellular thiols in human lymphocytes by α-lipoic acid: a flow cytometric analysis. Free Radic. Biol. Med. 22:1241-1257 https://doi.org/10.1016/S0891-5849(96)00552-7
  35. Shen, Q. W., C. S. Jones, N. Kalchayanand, M. J. Zhu and M. Du. 2005. Effect of dietary α-lipoic acid on growth, body composition, muscle pH, and AMP-activated protein kinase phosphorylation in mice. J. Anim. Sci. 83:2611-2617 https://doi.org/10.2527/2005.83112611x
  36. Shen, Q. W. and M. Du. 2005. Effects of dietary α-lipoic acid on glycolysis of postmortem muscle. Meat Sci. 71:306-311 https://doi.org/10.1016/j.meatsci.2005.03.018
  37. Tang, M. Y., Q. G. Ma, X. D. Chen and C. Ji. 2007. Effects of dietary metabolizable energy and lysine on carcass characteristics and meat quality in Arbor Acres broilers. Asian-Aust. J. Anim. Sci. 20:1865-1873 https://doi.org/10.5713/ajas.2007.1865
  38. Tsai, H. L., Sam K. C. Chang, Y. F. Lin and S. J. Chang. 2008. Beneficial effects of maternal vitamin E supplementation on the antioxidant system of the neonate chick brain. Asian-Aust. J. Anim. Sci. 21:225-231 https://doi.org/10.5713/ajas.2008.70220
  39. Wheeler, T. L. and M. Koohmaraie. 1994. Prerigor and postrigor changes in tenderness of ovine longissimus muscle. J. Anim. Sci. 72:1232-1238 https://doi.org/10.2527/1994.7251232x
  40. Woelfel, R. L., C. M. Owens, E. M. Hirschler, R. Martinez-Dawson and A. R. Sams. 2002. The characterization and incidence of pale, soft, exudative broiler meat in a commercial plant. Poult. Sci. 81:579-584 https://doi.org/10.1093/ps/81.4.579
  41. Young, J. F., J. Stagsted, S. K. Jensen, A. H. Karlsson and P. Henckel. 2003. Ascorbic acid, alpha-tocopherol, and oregano supplements reduce stress-induced deterioration of chicken meat quality. Poult. Sci. 82:1343-1351 https://doi.org/10.1093/ps/82.8.1343

Cited by

  1. Effects of alpha-lipoic acid supplementation on antioxidative ability and performance of sows and nursing piglets vol.96, pp.6, 2012, https://doi.org/10.1111/j.1439-0396.2011.01205.x
  2. Protective Efficacy of Alpha-lipoic Acid against AflatoxinB1-induced Oxidative Damage in the Liver vol.27, pp.6, 2014, https://doi.org/10.5713/ajas.2013.13588
  3. Nutritional Factors Affecting Abdominal Fat Deposition in Poultry: A Review vol.27, pp.7, 2014, https://doi.org/10.5713/ajas.2013.13702
  4. Effects of Dietary Alpha-lipoic Acid and Acetyl-L-carnitine on Growth Performance and Meat Quality in Arbor Acres Broilers vol.27, pp.7, 2014, https://doi.org/10.5713/ajas.2013.13436
  5. Effects of alpha-lipoic acid supplementation in different stages on growth performance, antioxidant capacity and meat quality in broiler chickens vol.55, pp.5, 2014, https://doi.org/10.1080/00071668.2014.958057
  6. Effects of dietary α-lipoic acid, acetyl-l-carnitine, and sex on antioxidative ability, energy, and lipid metabolism in broilers vol.93, pp.11, 2014, https://doi.org/10.3382/ps.2014-03921
  7. Effects of Dietary L-carnosine and Alpha-lipoic Acid on Growth Performance, Blood Thyroid Hormones and Lipid Profiles in Finishing Pigs vol.28, pp.10, 2015, https://doi.org/10.5713/ajas.14.0604
  8. Effects of dietary α-lipoic acid on carcass characteristics, antioxidant capability and meat quality in Hainan black goats vol.16, pp.1, 2017, https://doi.org/10.1080/1828051X.2016.1263546
  9. Effects of dietary vitamin C, vitamin E, and alpha-lipoic acid supplementation on the antioxidant defense system and immune-related gene expression in broilers exposed to oxidative stress by dexamethasone vol.97, pp.1, 2018, https://doi.org/10.3382/ps/pex298
  10. Alpha-lipoic acid: An inimitable feed supplement for poultry nutrition pp.09312439, 2017, https://doi.org/10.1111/jpn.12693
  11. Dietary Lipoic Acid Influences Antioxidant Capability and Oxidative Status of Broilers vol.12, pp.12, 2011, https://doi.org/10.3390/ijms12128476
  12. Selective deposition of dietary α-Lipoic acid in mitochondrial fraction and its synergistic effect with α-Tocoperhol acetate on broiler meat oxidative stability vol.12, pp.1, 2013, https://doi.org/10.1186/1476-511X-12-52
  13. Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B 1 -Induced Liver Oxidative Damage and Inflammatory Responses in Broilers vol.7, pp.12, 2009, https://doi.org/10.3390/toxins7124879
  14. Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers vol.32, pp.12, 2009, https://doi.org/10.5713/ajas.18.0939