Research and Development Trends on Bio-oil Upgrading via Catalytic Vapor Cracking

촉매 접촉 분해법을 활용한 바이오오일 개질 연구 동향

  • Park, Hyun Ju (Faculty of Environmental Engineering, University of Seoul) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Yim, Jin-Heong (Division of Advanced Materials, Kongju National University) ;
  • Sohn, Jung Min (Department of Mineral Resources & Energy Engineering, Chonbuk National University) ;
  • Park, Young-Kwon (Faculty of Environmental Engineering, University of Seoul)
  • 박현주 (서울시립대학교 환경공학부) ;
  • 전종기 (공주대학교 화학공학부) ;
  • 박성훈 (순천대학교 환경공학과) ;
  • 임진형 (공주대학교 신소재공학부) ;
  • 손정민 (전북대학교 자원에너지공학과) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Received : 2009.01.28
  • Published : 2009.02.10

Abstract

Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Currently, catalytic vapor cracking is considered the most potential upgrading method for stabilization of bio-oil, which is a pre-process required prior to feeding bio-oil into refineries. This review introduces the recent research and development trends on bio-oil upgrading via catalytic vapor cracking, focusing on catalysts and upgrading methods used.

바이오오일은 고부가가치 화학물질이나 차세대 탄화수소 연료 생산을 위한 석유정제시설의 연료로서 사용이 가능하기 때문에 전도유망한 신재생 에너지원 가운데 하나로 상당한 관심을 불러일으키고 있다. 바이오오일을 석유정제시설에 공급하기 위해서는 전처리 과정으로 안정화 공정이 필요하며, 이를 위한 방법 가운데 현재로서는 촉매 접촉 분해법이 잠재성이 가장 높은 것으로 인식되고 있다. 본 총설에서는 촉매 접촉 분해법을 활용한 바이오오일 개질에 관한 최근 연구 동향을 적용된 촉매의 성능과 개질 방법을 중심으로 소개하고자 한다.

Keywords

References

  1. IEA, Renewable energy: RD&D priorities (insights from IEA technology programmes) (2006)
  2. H. J. Park, J. I. Dong, J. K. Jeon, Y. K. Park, K. S. Yoo, S. S. Kim, J. Kim, and S. Kim, Chem. Eng. J., 143, 124 (2008) https://doi.org/10.1016/j.cej.2007.12.031
  3. H. J. Park, Y. K. Park, J. I. Dong, J. S. Kim, J. K. Jeon, S. S. Kim, J. Kim, B. Song, J. Park, and K. J. Lee, Fuel. Proces. Technol., 90, 186 (2009) https://doi.org/10.1016/j.fuproc.2008.08.017
  4. M. G. Perez, A. Chaala, and C. Roy, J. Anal. Appl. Pyrolysis, 65, 111 (2002) https://doi.org/10.1016/S0165-2370(01)00184-X
  5. A. Demirbas, Energy Conv. Manag., 42, 1357 (2001) https://doi.org/10.1016/S0196-8904(00)00137-0
  6. P. McKendry, Bioresour. Technol., 83, 37 (2002) https://doi.org/10.1016/S0960-8524(01)00118-3
  7. S. Czernik and A. V. Bridgwater, Energy Fuels, 18, 590 (2004) https://doi.org/10.1021/ef034067u
  8. D. Mohan, C. U. Pittman, and P. H. Steele, Energy Fuels, 20, 848 (2006) https://doi.org/10.1021/ef0502397
  9. S. Czernik, R. Maggi, and G. V. C. Peacocke, Fast Pyrolysis of Biomass: A Handbook, ed. A. V. Bridgewater, 2, 141, CPL Press, Newbury (2002)
  10. A. V. Bridgwater, Catal. Today, 29, 285 (1996) https://doi.org/10.1016/0920-5861(95)00294-4
  11. J. D. Adjaye and N. N. Bakhshi, Biomass Bioenerg., 8, 131, (1995) https://doi.org/10.1016/0961-9534(95)00018-3
  12. J. D. Adjaye and N. N. Bakhshi, Biomass Bioenerg., 8, 265 (1995) https://doi.org/10.1016/0961-9534(95)00019-4
  13. J. D. Adjaye and N. N. Bakhshi, Fuel. Proces. Technol., 45, 161 (1995) https://doi.org/10.1016/0378-3820(95)00034-5
  14. J. D. Adjaye and N. N. Bakhshi, Fuel. Proces. Technol., 45, 185 (1995) https://doi.org/10.1016/0378-3820(95)00040-E
  15. S. Vitolo, M. Seggiani, P. Frediani, G. ambrosini, and L. Politi, Fuel, 78, 1147 (1999) https://doi.org/10.1016/S0016-2361(99)00045-9
  16. S. Vitolo, B. Bresci, M. Seggiani, and M. G. Gallo, Fuel, 80, 17 (2001) https://doi.org/10.1016/S0016-2361(00)00063-6
  17. A. G. Gayubo, A. T. Aguayo, A. Atutxa, R. Agauado, and J. Bilbao, Ind. Eng. Chem. Res., 43, 2610 (2004) https://doi.org/10.1021/ie030791o
  18. A. G. Gayubo, A. T. Aguayo, A. Atutxa, R. Agauado, M. Olazar, and J. Bilbao, Ind. Eng. Chem. Res., 43, 2619 (2004) https://doi.org/10.1021/ie030792g
  19. A. G. Gayubo, A. T. Aguayo, A. Atutxa, R. Prieto, and J. Bilbao, Energy Fuels, 18, 1640 (2004) https://doi.org/10.1021/ef040027u
  20. M. C. Samolada, W. Baldauf, and I. A. Vasalos, Fuel, 77, 1667 (1998) https://doi.org/10.1016/S0016-2361(98)00073-8
  21. M. C. Samolda, A. Papafotica, and I. A. Vasalos, Energy Fuels, 14, 1161 (2000) https://doi.org/10.1021/ef000026b
  22. F. A. Twaiq, N. A. M. Zabidi, and S. Bhatia, Ind. Eng. Chem. Res., 38, 3230 (1999) https://doi.org/10.1021/ie980758f
  23. H. J. Park, J. I. Dong, J. K. Jeon, K. S. Yoo, J. H. Yim, J. M. Sohn, and Y. K. Park, J. Ind. Eng. Chem., 13, 182 (2007)
  24. P. T. Williams and P. A. Horne, Fuel, 74, 1839 (1995) https://doi.org/10.1016/0016-2361(95)80017-C
  25. P. A. Horne and P. T. Williams, Fuel, 75, 1043 (1996) https://doi.org/10.1016/0016-2361(96)00082-8
  26. P. A. Horne, N. Nugranad, and P. T. Williams, J. Anal. Appl. Pyrolysis, 34, 87 (1995) https://doi.org/10.1016/0165-2370(94)00877-4
  27. P. T. Williams and N. Nugranad, Energy, 25, 493 (2000) https://doi.org/10.1016/S0360-5442(00)00009-8
  28. A. Aho, N. Kumar, K. Er$\ddot{a}$nen, T. Salmi, M. Hupa, and D. Y. Murzin, Process Saf. Environ. Protect., 85, 473 (2007) https://doi.org/10.1205/psep07012
  29. A. Aho, N. Kumar, K. Er$\ddot{a}$nen, T. Salmi, M. Hupa, and D. Y. Murzin, Fuel, 87, 2493 (2008) https://doi.org/10.1016/j.fuel.2008.02.015
  30. D. Fabbri, C. Torri, and V. Baravelli, J. Anal. Appl. Pyrolysis, 80, 24 (2007) https://doi.org/10.1016/j.jaap.2006.12.025
  31. A. A. Lappas, M. C. Samolada, D. K. Iatridis, S. S. Voutetakis, and I. A. Vasalos, Fuel, 81, 2087 (2002) https://doi.org/10.1016/S0016-2361(02)00195-3
  32. H. Zhang, R. Xiao, H. Huang, and G. Xiao, Bioresour. Technol., 100, 1428 (2009) https://doi.org/10.1016/j.biortech.2008.08.031
  33. I. Demiral and S. sens$\ddot{o}$z, Bioresour. Technol., 99, 8002 (2008) https://doi.org/10.1016/j.biortech.2008.03.053
  34. K. Ariga, J. P. Hill, M. V. Lee, A. Viny, R. Charvet, and S. Aharya, Sci. Technol. Adv. Mater., 9, 014109 (2008) https://doi.org/10.1088/1468-6996/9/1/014109
  35. F. A. Twaiq, N. A. M. Zabidi, A. R. Mohamed, and S. Bhatia, Fuel Proces. Technol., 84, 105 (2003) https://doi.org/10.1016/S0378-3820(03)00048-1
  36. F. A. Twaiq, A. R. Mohamed, and S. Bhatia, Micropor. Mesopor. Mater., 64, 95 (2003) https://doi.org/10.1016/j.micromeso.2003.06.001
  37. J. Adam, M. Blazso, E. Meszaros, M. Stocker, M. H. Nilsen, A. Bouzga, J. E. Hustad, M. $Gr{\o}nli$, and G. ${\O}ye$, Fuel, 84, 1494 (2005)
  38. J. Adam, E. Antonakou, A. Lappas, M. St$\ddot{o}$cker, M. H. Nilsen, A. Bouzga, J. E. Hustad, and G. .;$\phi$, Micropor. Mesopor. Mater., 96, 93 (2006) https://doi.org/10.1016/j.micromeso.2006.06.021
  39. E. Antonakou, A. Lappas, M. H. Nilsen, A. Bouzga, and M. St$\ddot{a}$cker, Fuel, 85, 2202 (2006) https://doi.org/10.1016/j.fuel.2006.03.021
  40. M. H. Nilsen, E. Antonakou, A. Bouzga, A. Lappas, K. Mathisen, and M. St$\ddot{a}$cker, Micropor. Mesopor. Mater., 105, 189 (2007) https://doi.org/10.1016/j.micromeso.2007.05.059
  41. E. F. Iliopoulou, E. V. Antonakou, S. A. Karakoulia, I. A. Vasalos, A. A. Lappas, and K. S. Triantafyllidis, Chem. Eng. J., 134, 51 (2007) https://doi.org/10.1016/j.cej.2007.03.066
  42. Z. Zhang. Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao, and F. S. Xiao, Angew. Chem. Int. Ed., 40, 1258 (2001) https://doi.org/10.1002/1521-3773(20010401)40:7<1258::AID-ANIE1258>3.0.CO;2-C
  43. K. S. Triantafyllidis, E. F. Iliopoulou, E. V. Antonakou, A. A. Lappas, H. Wang, and T. J. Pinnavaia, Micropor. Mesopor. Mater., 99, 132 (2007) https://doi.org/10.1016/j.micromeso.2006.09.019
  44. H. I. Lee, H. J. Park, Y. K. Park, J. Y. Hur, J. K. Jeon, and J. M. Kim, Catal. Today, 132, 68 (2008) https://doi.org/10.1016/j.cattod.2007.12.029
  45. H. J. Park, J. K. Jeon, J. M. Kim, H. I. Lee, J. H. Yim, J. Park, and Y. K. Park, J. Nanosci. Nanotech, 8, 5439 (2008) https://doi.org/10.1166/jnn.2008.1102