참고문헌
- Berger R, Garnier Y. Pathophysiology of perinatal brain damage. Brain Res Brain Res Rev 1999;30:107-34 https://doi.org/10.1016/S0165-0173(99)00009-0
- Towfighi J, Mauger D, Vannucci R.C, Vannucci SJ. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia ischemia: a light microscopic study. Brain Res Dev Brain Res 1997;100:149-60 https://doi.org/10.1016/S0165-3806(97)00036-9
- Tan S, Zhou F, Nielsen VG, Wang Z, Gladson CL, Parks DA. Sustained hypoxia-ischemia results in reactive nitrogen and oxygen species production and injury in the premature fetal rabbit brain. J Neuropathol Exp Neurol 1998;57:544-53 https://doi.org/10.1097/00005072-199806000-00002
- Vannucci RC. Experimental biology of cerebral hypoxia- ischemia: relation to perinatal brain damage. Pediatr Res 1990;27:317-26 https://doi.org/10.1203/00006450-199004000-00001
- Peruche B, Krieglstein J. Mechanisms of drug actions against neuronal damage caused by ischemia--an overview. Prog Neuropsychopharmacol Biol Psychiatry 1993;17:21-70 https://doi.org/10.1016/0278-5846(93)90032-N
- Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004;255:re16
- Moncada S, Palmer RM, Higgs E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43: 109-42
- Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA. Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 1994;14:175-92 https://doi.org/10.1038/jcbfm.1994.25
- Stagliano NE, Zhao W, Prado R, Dewanjee MK, Ginsberg MD, Dietrich WD. The effect of nitric oxide synthase inhibition on acute platelet accumulation and hemodynamic depression in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab 1997;17:1182-90
-
Massagu
$\acute{e}$ J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 1996;85:l947-50 - Lorez H, Keller F, Ruess G, Otten U. Nerve growth factor increases in adult rat brain after hypoxic injury. Neurosci Lett 1989;98:339-44 https://doi.org/10.1016/0304-3940(89)90425-4
- Williams C, Guan J, Miller O, Beilharz E, McNeill H, Sirimanne E, Gluckman P. The role of the growth factors IGF- 1 and TGF beta 1 after hypoxic-ischemic brain injury. Ann N Y Acad Sci 1995;765:306-7 https://doi.org/10.1111/j.1749-6632.1995.tb16592.x
-
Wiessner C, Gehrmann J, Lindholm D, T
$\ddot{o}$ pper R, Kreutzberg GW, Hossmann KA. Expression of transforming growth factor-beta 1 and interleukin-1 beta mRNA in rat brain following transient forebrain ischemia. Acta Neuropathol 1993; 86:439-46 https://doi.org/10.1007/BF00228578 - Gross CE, Bednar MM, Howard DB, Sporn MB. Transforming growth factor-beta 1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke 1993;24: 558-62
- Vivien D, Bernaudin M, Buisson A, Divoux D, MacKenzie ET, Nouvelot A. Evidence of type I and type II transforming growth factor-beta receptors in central nervous tissues: changes induced by focal cerebral ischemia. J Neurochem 1998;70:2296-304 https://doi.org/10.1046/j.1471-4159.1998.70062296.x
- Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 1998; 54:71-85 https://doi.org/10.1016/S0301-0082(97)00066-X
- Chung HM, Choi EJ, Seo ES, Kim WT. The neuroprotective effect of transforming growth factor-beta1 via anti-apoptosis on hypoxic-ischemic brain injury in neonatal rats. Korean J Perinatol 2008;19:42-53
- Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 1997;71:143-55 https://doi.org/10.1016/S0165-0270(96)00136-7
- Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981;9:131-41 https://doi.org/10.1002/ana.410090206
- Vannucci RC. Hypoxic-ischemic encephalopathy. Am J Perinatol 2000;17:113-20 https://doi.org/10.1055/s-2000-9293
- Romijn HJ, Hofman MA, Gramsbergen A. At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 1991;26:61-7 https://doi.org/10.1016/0378-3782(91)90044-4
- Naito S, Ueda T. Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. J Biol Chem 1983;258:696-9
- Dienel G. Hertz L. Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 2005;50:362-88 https://doi.org/10.1002/glia.20157
- Prehn JH, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC, Miller RJ. Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons. Proc Natl Acad Sci USA 1994;91:12599-603 https://doi.org/10.1073/pnas.91.26.12599
- Buisson A, Nicole O, Docagne F, Sartelet H, Mackenzie ET, Vivien D. Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor beta1. FASEB J 1998;12:1683-91
- Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA- dependent superoxide production and neurotoxicity. Nature 1993;364:535-7 https://doi.org/10.1038/364535a0
- Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Re. Neurosci 1994;17:31-108 https://doi.org/10.1146/annurev.ne.17.030194.000335
- Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361: 31-9 https://doi.org/10.1038/361031a0
- Malenka R, Nicoll RA. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 1993;16:521-7 https://doi.org/10.1016/0166-2236(93)90197-T
- Nicoll RA, Malenka RC. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci 1999;868:515-25 https://doi.org/10.1111/j.1749-6632.1999.tb11320.x
- Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 1996;87:1327-38 https://doi.org/10.1016/S0092-8674(00)81827-9
- Choi DW. Excitotoxic cell death. J Neurobiol 1992;23:1261-76 https://doi.org/10.1002/neu.480230915
- Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 1997;20:132-9 https://doi.org/10.1016/S0166-2236(96)10074-6
- Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke 1997;28:1283-8
- Parathath S, Parathath S, Tsirka S. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 2006; 119:339-49 https://doi.org/10.1242/jcs.02734
- Zollner S, Aberle S, Harvey SE, Polokoff MA, Rubanyi GM. Changes of endothelial nitric oxide synthase level and activity during endothelial cell proliferation. Endothelium 2000; 7:169-84 https://doi.org/10.3109/10623320009165315
- Wong D, Dorovini-Zis K, Vincent S. Cytokines. nitric oxide and CGMP modulate the permeability of an in vitro model of the human blood brain barrier. Exp Neurol 2004;190:446-55 https://doi.org/10.1016/j.expneurol.2004.08.008
- Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 1996;16:981-7
- Dimmeler S, Dernbach E, Zeiher A. Phosphorylation of the endothelial nitric oxide synthase at Ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 2000; 477:258-62 https://doi.org/10.1016/S0014-5793(00)01657-4
- Dawson V, Kizushi V, Huang P, Snyder S, Dawson T. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 1996;16:2479-87
피인용 문헌
- Effects of Dizocilpine (MK-801) via Up-modulation of N-methyl-D-aspartate (NMDA) Receptors on Hypoxic-Ischemic Brain Injury in Neonatal Rats vol.25, pp.3, 2009, https://doi.org/10.14734/kjp.2014.25.3.166