Flame Propagation Characteristics Through Suspended Combustible Particles in a Full-Scaled Duct

이송 배관 내 분진폭발의 화염전파특성

  • Han, OuSup (Center for Chemical Safety and Health, Occupational Safety & Health Research Institute(KOSHA))
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원 화학물질안전보건센터)
  • Received : 2009.07.24
  • Accepted : 2009.08.12
  • Published : 2009.10.31

Abstract

This study is to investigate experimentally the flame structure and propagation mechanism in dust explosions and to provide the fundamental knowledge. Upward propagating laminar dust flames in a vertical duct of 1.8 m height and 0.15 m square cross-section are observed and flame front is visualized using by a high-speed video camera. Also, the thicknesses of preheated and reaction zone have been determined by a schlieren, electrostatic probe and thermocouple. The thickness of preheated zone in lycopodium dust flame is observed to be 4~13 mm, about several orders of magnitude higher than that of premixed gaseous flames. From the experimental results by a PIV(Particle Image Velocimetry) system, a certain residence time of the unburned particle in preheated zone is needed to generate combustible gas from the particle. The residence time will depend on preheated zone thickness, particle velocity and flame propagation velocity.

본 연구에서는 분진폭발에 있어서 기초적 현상을 규명하고 분진의 화염구조와 메커니즘에 대하여 실험적으로 조사하였다. 실험장치는 길이 1.8 m, 단면이 0.15 m의 정방형인 수직연소관을 사용하였으며, 덕트 내를 전파하는 상방 분진층류화염과 화염면에 대하여 고속카메라를 사용하여 가시화하였다. 또한 슐리렌, 이온프로브, 열전대 등을 사용하여 예열대 및 반응대의 두께를 측정하였다. 석송자 분진화염의 예열대 두께는 4~13 mm로 탄화수소가스의 예혼합기 화염보다도 수배 크다. 입자화상유속법(PIV)에 의한 해석 결과, 예열대에서의 미연소 입자의 체류 시간은 입자의 열분해가스 생성에 필요하며, 체류시간은 화염전파속도, 입자속도 및 예열대 두께에 의존하는 것을 알았다.

Keywords

References

  1. Dorsett, H. G., Jacobson, M., Nagy, J. and Williams, R. P., RI 5624, U.S. Bureau of Mines, 1-21(1960)
  2. Siwek, R. and Cesana, C., Operating Instructions for the 20-L Apparatus, Adolf Huhner AG, CH-4052, Brisfelden, Switzerland( 1986)
  3. ASTM E1226-88, Standard test method for pressure and rate of pressure rise for combustible dusts(1988)
  4. ISO. 6184/1-1985, Explosion pretection systems-Part 1 : Determination of explosion indices of combustible dust in air(1985)
  5. Eckhoff, R. K., Dust explosions in the process industries-3rd ed., Gulf professional publishing(2003)
  6. Proust, C., Flame propagation and combustion in some dist-air mixtures, J. Loss Prev. in the Process Ind., 19, 89-100(2006)
  7. Han, O. S., Yashima, M., Matsuda, T., Matsui, H., Miyake, A. and Ogawa, T., "Behavior of Flame Propagating Through Lycopodium Dust Clouds in a Vertical Duct," J. Loss Prev. in the Process Ind., 13(6), 449-457(2000) https://doi.org/10.1016/S0950-4230(99)00072-8
  8. Dahoe, A. E., Dust Explosion 'A Study of Flame Propagation,' Delft Univ. of Tech.(2000)
  9. Van der, P. and Wel, 'Ignition and Propagation of Dust Explosions,' Delft Univ. Press, Netherlands(1993)
  10. Chen, J. L., Dobashi, R. and Hirano, T., 'Mechanism of Flame Propagation Through Combustible Particle Clouds,' J. Loss Prev. in the Process Ind., 9, 225-229(1996) https://doi.org/10.1016/0950-4230(96)00001-0
  11. Proust, C. and Veyssiere, B., "Fundamental Properties of Flames Propagating in Starch Dust-air Mixtures," Combustion Science and Technology, 62, 149-172(1988) https://doi.org/10.1080/00102208808924007
  12. Raffel, M., Willert, C. and Kompenhaus, J., 'Particle Image Velocimetry,' Springer-Verlag, Berlin Heidelberg(1998)
  13. Mei, R., "Velocity Fidelity of Flow Tracer Particles," Experiments in Fluids, 22, 1-13(1996) https://doi.org/10.1007/BF01893300
  14. Okamoto, K., Hassan, Y. A. and Schmidl, W. D., 'New Tracking Algorithm for Particle Image Velocimetry,' Experiments in Fluids, 19, 342-347(1995) https://doi.org/10.1007/BF00203419
  15. Kean, R. D. and Adrian, R. J., 'Theory of Cross-correlation Analysis of PIV Images, in Flow Visualization and Image Analysis,' ed. F. T. M. Nieuwstadt, 1-25(1993)
  16. Adrian, R. J., "Particle-Imaging Technique for Experimental Fluid Mechanics," Annual Review Fluid Mechanics, 23, 261-304(1991) https://doi.org/10.1146/annurev.fl.23.010191.001401
  17. Thomas, G. O., Oakley, G. and Brenton, J., "Influence of the Morphology of Lycopodium Dust on its Minimum Ignition Energy," Combust. Flame, 85, 526-528(1991) https://doi.org/10.1016/0010-2180(91)90157-7
  18. Glinka, W., Wang, X., Wolanski, P. and Xie, L., 'Velocity and Structure of Laminar Dust Flames,' The 7th Intenational Colloquim on Dust Explosions, Norway(1996)
  19. Shepard, C. E. and Warshawsky, I., 'Electrical Techniques for Compensation of Thermal Time of Thermocouples and Resistance Thermometer Elements,' NACA TN 2703(1952)
  20. Ballantyne, A. and Moss, J. B., Combustion Science and Technology, 17, 63-72(1977) https://doi.org/10.1080/00102209708946813
  21. Lewis, B. and Von Elbe, G., Combustion Flames and Explosions of Gases, 2nd edition, Academic Press Inc., New York, 292-294 (1961)
  22. Mason, W. E. and Wilson, M. J. G., 'Laminar Flames of Lycopodium Dust in Air,' Combus. Flame, 11, 195-200(1967) https://doi.org/10.1016/0010-2180(67)90045-4